onnx_diagnostic.torch_models.hghub.model_inputs¶
- onnx_diagnostic.torch_models.hghub.model_inputs.check_hasattr(config: Any, *args: str | Tuple[Any, ...])[source]¶
Checks the confiugation has all the attributes in
args
. Raises an exception otherwise.
- onnx_diagnostic.torch_models.hghub.model_inputs.compute_model_size(model: Module) Tuple[int, int] [source]¶
Returns the size of the models (weights only) and the number of the parameters.
- onnx_diagnostic.torch_models.hghub.model_inputs.config_class_from_architecture(arch: str, exc: bool = False) type | None [source]¶
Retrieves the configuration class for a given architecture.
- Parameters:
arch – architecture (clas name)
exc – raise an exception if not found
- Returns:
type
- onnx_diagnostic.torch_models.hghub.model_inputs.filter_out_unexpected_inputs(model: Module, kwargs: Dict[str, Any])[source]¶
Removes input names in kwargs if no parameter names was found in
model.forward
.
- onnx_diagnostic.torch_models.hghub.model_inputs.get_inputs_for_image_classification(model: Module, config: Any | None, input_width: int, input_height: int, input_channels: int, batch_size: int = 2, dynamic_rope: bool = False, **kwargs)[source]¶
Generates inputs for task
image-classification
.- Parameters:
model – model to get the missing information
config – configuration used to generate the model
batch_size – batch size
input_channel – input channel
input_width – input width
input_height – input height
kwargs – to overwrite the configuration, example
num_hidden_layers=1
- Returns:
dictionary
- onnx_diagnostic.torch_models.hghub.model_inputs.get_inputs_for_text2text_generation(model: Module, config: Any | None, dummy_max_token_id: int, num_key_value_heads: int, num_hidden_layers: int, head_dim: int, encoder_dim: int, batch_size: int = 2, sequence_length: int = 30, sequence_length2: int = 3, **kwargs)[source]¶
Generates input for task
text2text-generation
.- Parameters:
model – model to get the missing information
config – configuration used to generate the model
head_dim – last dimension of the cache
dummy_max_token_id – dummy max token id
batch_size – batch size
encoder_dim – last dimension of encoder_last_hidden_state
sequence_length – sequence length
sequence_length2 – new sequence length
kwargs – to overwrite the configuration, example
num_hidden_layers=1
- Returns:
dictionary
Stolen inputs for one model.
cache_position:T7s1 past_key_values:EncoderDecoderCache( self_attention_cache=DynamicCache( key_cache=#6[T1s1x8x1x64,...], value_cache=#6[T1s1x8x1x64,...]), cross_attention_cache=DynamicCache( key_cache=#6[T1s1x8x16x64,...], value_cache=#6[T1s1x8x16x64,...])), decoder_input_ids:T7s1x1, encoder_outputs:dict(last_hidden_state:T1s1x16x512)
- onnx_diagnostic.torch_models.hghub.model_inputs.get_inputs_for_text_generation(model: Module, config: Any | None, dummy_max_token_id: int, num_key_value_heads: int, num_hidden_layers: int, head_dim: int, batch_size: int = 2, sequence_length: int = 30, sequence_length2: int = 3, dynamic_rope: bool = False, **kwargs)[source]¶
Generates input for task
text-generation
.- Parameters:
model – model to get the missing information
config – configuration used to generate the model
head_dim – last dimension of the cache
dummy_max_token_id – dummy max token id
batch_size – batch size
sequence_length – sequence length
sequence_length2 – new sequence length
dynamic_rope – use dynamic rope (see
transformers.LlamaConfig
)kwargs – to overwrite the configuration, example
num_hidden_layers=1
- Returns:
dictionary