onnx_diagnostic.helpers.onnx_helper¶
- class onnx_diagnostic.helpers.onnx_helper.NodeCoordinates(node: TensorProto | NodeProto | str, path: Tuple[Tuple[int, str, str], ...])[source][source]¶
A way to localize a node, path is a tuple of three information, node index, node type, node name.
- class onnx_diagnostic.helpers.onnx_helper.ResultFound(name: str, producer: NodeCoordinates | None, consumer: NodeCoordinates | None)[source][source]¶
Class returned by
enumerate_results()
.
- onnx_diagnostic.helpers.onnx_helper.check_model_ort(onx: ModelProto, providers: str | List[Any] | None = None, dump_file: str | None = None) onnxruntime.InferenceSession [source][source]¶
Loads a model with onnxruntime.
- Parameters:
onx – ModelProto
providers – list of providers, None fur CPU, cpu for CPU, cuda for CUDA
dump_file – if not empty, dumps the model into this file if an error happened
- Returns:
InferenceSession
- onnx_diagnostic.helpers.onnx_helper.convert_endian(tensor: TensorProto) None [source][source]¶
Call to convert endianness of raw data in tensor.
- Args:
tensor: TensorProto to be converted.
- onnx_diagnostic.helpers.onnx_helper.dtype_to_tensor_dtype(dt: dtype | torch.dtype) int [source][source]¶
Converts a torch dtype or numpy dtype into a onnx element type.
- Parameters:
to – dtype
- Returns:
onnx type
- onnx_diagnostic.helpers.onnx_helper.enumerate_results(proto: FunctionProto | GraphProto | ModelProto | Sequence[NodeProto], name: Set[str] | str, verbose: int = 0, coordinates: List[Tuple[int, str, str]] | None = None) Iterator[ResultFound] [source][source]¶
Iterates on all nodes, attributes to find where a name is used.
- Parameters:
proto – a proto
name – name or names to find
verbose – verbosity
coordinates – coordinates of a node
- Returns:
iterator on
ResultFound
- onnx_diagnostic.helpers.onnx_helper.from_array_extended(tensor: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str], name: str | None = None) TensorProto [source][source]¶
Converts an array into a
onnx.TensorProto
.- Parameters:
tensor – numpy array or torch tensor
name – name
- Returns:
TensorProto
- onnx_diagnostic.helpers.onnx_helper.from_array_ml_dtypes(arr: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | complex | bytes | str | _NestedSequence[complex | bytes | str], name: str | None = None) TensorProto [source][source]¶
Converts a numpy array to a tensor def assuming the dtype is defined in ml_dtypes.
- Args:
arr: a numpy array. name: (optional) the name of the tensor.
- Returns:
TensorProto: the converted tensor def.
- onnx_diagnostic.helpers.onnx_helper.get_onnx_signature(model: ModelProto) Tuple[Tuple[str, Any], ...] [source][source]¶
Produces a tuple of tuples corresponding to the signatures.
- Parameters:
model – model
- Returns:
signature
- onnx_diagnostic.helpers.onnx_helper.iterator_initializer_constant(model: FunctionProto | GraphProto | ModelProto, use_numpy: bool = True, prefix: str = '') Iterator[Tuple[str, torch.Tensor | ndarray]] [source][source]¶
Iterates on iniatialiers and constant in an onnx model.
- Parameters:
model – model
use_numpy – use numpy or pytorch
prefix – for subgraph
- Returns:
iterator
- onnx_diagnostic.helpers.onnx_helper.np_dtype_to_tensor_dtype(dt: dtype) int [source][source]¶
Converts a numpy dtype into a onnx element type.
- Parameters:
to – dtype
- Returns:
onnx type
- onnx_diagnostic.helpers.onnx_helper.onnx_dtype_name(itype: int, exc: bool = True) str [source][source]¶
Returns the ONNX name for a specific element type.
<<<
import onnx from onnx_diagnostic.helpers.onnx_helper import onnx_dtype_name itype = onnx.TensorProto.BFLOAT16 print(onnx_dtype_name(itype)) print(onnx_dtype_name(7))
>>>
BFLOAT16 INT64
- onnx_diagnostic.helpers.onnx_helper.onnx_dtype_to_np_dtype(itype: int) Any [source][source]¶
Converts an onnx type into a to numpy dtype. That includes ml_dtypes dtypes.
- Parameters:
to – onnx dtype
- Returns:
numpy dtype
- onnx_diagnostic.helpers.onnx_helper.onnx_find(onx: str | ModelProto, verbose: int = 0, watch: Set[str] | None = None) List[NodeProto | TensorProto] [source][source]¶
Looks for node producing or consuming some results.
- Parameters:
onx – model
verbose – verbosity
watch – names to search for
- Returns:
list of nodes
- onnx_diagnostic.helpers.onnx_helper.onnx_lighten(onx: str | ModelProto, verbose: int = 0) Tuple[ModelProto, Dict[str, Dict[str, float]]] [source][source]¶
Creates a model without big initializers but stores statistics into dictionaries. The function can be reversed with
onnx_diagnostic.helpers.onnx_helper.onnx_unlighten()
. The model is modified inplace.- Parameters:
onx – model
verbose – verbosity
- Returns:
new model, statistics
- onnx_diagnostic.helpers.onnx_helper.onnx_unlighten(onx: str | ModelProto, stats: Dict[str, Dict[str, float]] | None = None, verbose: int = 0) ModelProto [source][source]¶
Function fixing the model produced by function
onnx_diagnostic.helpers.onnx_helper.onnx_lighten()
. The model is modified inplace.- Parameters:
onx – model
stats – statistics, can be None if onx is a file, then it loads the file
<filename>.stats
, it assumes it is json formatverbose – verbosity
- Returns:
new model, statistics
- onnx_diagnostic.helpers.onnx_helper.pretty_onnx(onx: FunctionProto | GraphProto | ModelProto | ValueInfoProto | str, with_attributes: bool = False, highlight: Set[str] | None = None, shape_inference: bool = False) str [source][source]¶
Displays an onnx prot in a better way.
- Parameters:
with_attributes – displays attributes as well, if only a node is printed
highlight – to highlight some names
shape_inference – run shape inference before printing the model
- Returns:
text
- onnx_diagnostic.helpers.onnx_helper.shadowing_names(proto: FunctionProto | GraphProto | ModelProto | Sequence[NodeProto], verbose: int = 0, existing: Set[str] | None = None, shadow_context: Set[str] | None = None, post_shadow_context: Set[str] | None = None) Tuple[Set[str], Set[str], Set[str]] [source][source]¶
Returns the shadowing names, the names created in the main graph after they were created in a subgraphs and the names created by the nodes.
- onnx_diagnostic.helpers.onnx_helper.tensor_dtype_to_np_dtype(tensor_dtype: int) dtype [source][source]¶
Converts a TensorProto’s data_type to corresponding numpy dtype. It can be used while making tensor.
- Parameters:
tensor_dtype – TensorProto’s data_type
- Returns:
numpy’s data_type
- onnx_diagnostic.helpers.onnx_helper.tensor_statistics(tensor: ndarray | TensorProto) Dict[str, float | str] [source][source]¶
Produces statistics on a tensor.
- Parameters:
tensor – tensor
- Returns:
statistics
<<<
import pprint import numpy as np from onnx_diagnostic.helpers.onnx_helper import tensor_statistics t = np.random.rand(40, 50).astype(np.float16) pprint.pprint(tensor_statistics(t))
>>>
{'>0.0': 2000, '>0.00010001659393310547': 2000, '>0.0010004043579101562': 1997, '>0.01000213623046875': 1978, '>0.0999755859375': 1793, '>0.5': 980, '>1.0': 0, '>1.0013580322265625e-05': 2000, '>1.0132789611816406e-06': 2000, '>1.1920928955078125e-07': 2000, '>1.9599609375': 0, '>10.0': 0, '>100.0': 0, '>1000.0': 0, '>10000.0': 0, 'itype': 10, 'max': 0.9990234375, 'mean': 0.494384765625, 'min': 0.0005450248718261719, 'nnan': 0.0, 'numel': 2000, 'q0.1': 0.09578857421875, 'q0.2': 0.2058837890625, 'q0.3': 0.30454101562499997, 'q0.4': 0.39765625000000004, 'q0.5': 0.4896240234375, 'q0.6': 0.5871093749999999, 'q0.7': 0.688134765625, 'q0.8': 0.78525390625, 'q0.9': 0.8907226562500001, 'shape': '40x50', 'size': 4000, 'std': 0.283935546875, 'stype': 'FLOAT16'}