onnx_diagnostic.reference

ExtendedReferenceEvaluator

class onnx_diagnostic.reference.ExtendedReferenceEvaluator(proto: Any, opsets: Dict[str, int] | None = None, functions: List[ReferenceEvaluator | FunctionProto] | None = None, verbose: int = 0, new_ops: List[type[OpRun]] | None = None, **kwargs)[source][source]

This class replaces the python implementation by custom implementation. The evaluator allows to test scenarios outside what an onnx backend bound to the official onnx operators definition could do such as optimization patterns involving onnxruntime contrib operators.

from onnx_diagnostic.reference import ExtendedReferenceEvaluator
ref = ExtendedReferenceEvaluator(...)

The class overloads or adds the following operators by default:

<<<

import pprint
from onnx_diagnostic.reference import ExtendedReferenceEvaluator

pprint.pprint(ExtendedReferenceEvaluator.default_ops)

>>>

    [<class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.AddAdd'>,
     <class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.AddMul'>,
     <class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.AddSharedInput'>,
     <class 'onnx_diagnostic.reference.ops.op_attention.Attention'>,
     <class 'onnx_diagnostic.reference.ops.op_average_pool_grad.AveragePoolGrad'>,
     <class 'onnx_diagnostic.reference.ops.op_bias_softmax.BiasSoftmax'>,
     <class 'onnx_diagnostic.reference.ops.op_concat.Concat'>,
     <class 'onnx_diagnostic.reference.ops.op_cast_like.CastLike_15'>,
     <class 'onnx_diagnostic.reference.ops.op_cast_like.CastLike_19'>,
     <class 'onnx_diagnostic.reference.ops.op_complex.ComplexModule'>,
     <class 'onnx_diagnostic.reference.ops.op_constant_of_shape.ConstantOfShape'>,
     <class 'onnx_diagnostic.reference.ops.op_fused_matmul.FusedMatMul'>,
     <class 'onnx_diagnostic.reference.ops.op_gather.Gather'>,
     <class 'onnx_diagnostic.reference.ops.op_gather_elements.GatherElements'>,
     <class 'onnx_diagnostic.reference.ops.op_gather_grad.GatherGrad'>,
     <class 'onnx_diagnostic.reference.ops.op_scatternd_of_shape.MaskedScatterNDOfShape'>,
     <class 'onnx_diagnostic.reference.ops.op_memcpy_host.MemcpyFromHost'>,
     <class 'onnx_diagnostic.reference.ops.op_memcpy_host.MemcpyToHost'>,
     <class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.MulAdd'>,
     <class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.MulMul'>,
     <class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.MulSharedInput'>,
     <class 'onnx_diagnostic.reference.ops.op_mul_sigmoid.MulSigmoid'>,
     <class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.MulSub'>,
     <class 'onnx_diagnostic.reference.ops.op_negxplus1.NegXplus1'>,
     <class 'onnx_diagnostic.reference.ops.op_qlinear_conv.QLinearConv'>,
     <class 'onnx_diagnostic.reference.ops.op_qlinear_average_pool.QLinearAveragePool'>,
     <class 'onnx_diagnostic.reference.ops.op_quick_gelu.QuickGelu'>,
     <class 'onnx_diagnostic.reference.ops.op_replace_zero.ReplaceZero'>,
     <class 'onnx_diagnostic.reference.ops.op_rotary.Rotary'>,
     <class 'onnx_diagnostic.reference.ops.op_scan.Scan'>,
     <class 'onnx_diagnostic.reference.ops.op_scatter_elements.ScatterElements'>,
     <class 'onnx_diagnostic.reference.ops.op_scatternd_of_shape.ScatterNDOfShape'>,
     <class 'onnx_diagnostic.reference.ops.op_simplified_layer_normalization.SimplifiedLayerNormalization'>,
     <class 'onnx_diagnostic.reference.ops.op_skip_layer_normalization.SkipLayerNormalization'>,
     <class 'onnx_diagnostic.reference.ops.op_slice.Slice_1'>,
     <class 'onnx_diagnostic.reference.ops.op_slice.Slice_10'>,
     <class 'onnx_diagnostic.reference.ops.op_add_add_mul_mul.SubMul'>,
     <class 'onnx_diagnostic.reference.ops.op_complex.ToComplex'>,
     <class 'onnx_diagnostic.reference.ops.op_transpose_cast.Transpose2DCastFP16'>,
     <class 'onnx_diagnostic.reference.ops.op_transpose_cast.Transpose2DCastFP32'>,
     <class 'onnx_diagnostic.reference.ops.op_tri_matrix.TriMatrix'>]
run(*args, **kwargs)[source][source]

See onnx.reference.ReferenceEvaluator.run().

OnnxruntimeEvaluator

class onnx_diagnostic.reference.OnnxruntimeEvaluator(proto: str | FunctionProto | ModelProto | GraphProto | NodeProto | OnnxruntimeEvaluator, session_options: SessionOptions | None = None, providers: str | List[str] | None = None, nvtx: bool = False, enable_profiling: bool = False, graph_optimization_level: GraphOptimizationLevel | bool = None, log_severity_level: int | None = None, log_verbosity_level: int | None = None, optimized_model_filepath: str | None = None, disable_aot_function_inlining: bool | None = None, use_training_api: bool = False, verbose: int = 0, local_functions: Dict[Tuple[str, str], FunctionProto | ModelProto | GraphProto | NodeProto | OnnxruntimeEvaluator] | None = None, ir_version: int = 10, opsets: int | Dict[str, int] | None = None, whole: bool = False, torch_or_numpy: bool | None = None)[source][source]

This class loads an onnx model and the executes one by one the nodes with onnxruntime. This class is mostly meant for debugging.

Parameters:
  • proto – proto or filename

  • session_options – options

  • providers – providers

  • nvtx – enable nvidia events

  • providersNone, “CPU”, “CUDA” or a list of providers

  • graph_optimization_level – see onnxruntime.SessionOptions

  • log_severity_level – see onnxruntime.SessionOptions

  • log_verbosity_level – see onnxruntime.SessionOptions

  • optimized_model_filepath – see onnxruntime.SessionOptions

  • disable_aot_function_inlining – see onnxruntime.SessionOptions

  • use_training_api – use onnxruntime-traning API

  • verbose – verbosity

  • local_functions – additional local function

  • ir_version – ir version to use when unknown

  • opsets – opsets to use when unknown

  • whole – if True, do not split node by node

  • torch_or_numpy – force the use of one of them, True for torch, False for numpy, None to let the class choose

property input_names: List[str]

Returns input names.

property input_types: List[TypeProto]

Returns input types.

property output_names: List[str]

Returns output names.

property output_types: List[TypeProto]

Returns output types.

run(outputs: List[str] | None, feed_inputs: Dict[str, Any], intermediate: bool = False, report_cmp: ReportResultComparison | None = None) Dict[str, Any] | List[Any][source][source]

Runs the model. It only works with numpy arrays.

Parameters:
  • outputs – required outputs or None for all

  • feed_inputs – inputs

  • intermediate – returns all output instead of the last ones

  • report_cmp – used as a reference, every intermediate results is compare to every existing one, if not empty, it is an instance of onnx_diagnostic.reference.ReportResultComparison

Returns:

outputs, as a list if return_all is False, as a dictionary if return_all is True

ReportResultComparison

class onnx_diagnostic.reference.ReportResultComparison(tensors: Dict[str | Tuple[str, int, str], torch.Tensor])[source][source]

Holds tensors a runtime can use as a reference to compare intermediate results. See onnx_diagnostic.reference.TorchOnnxEvaluator.run().

Parameters:

tensors – tensor

clear()[source][source]

Clears the last report.

property data: List[Dict[str, Any]]

Returns data which can be consumed by a dataframe.

key(tensor: torch.Tensor) Tuple[int, Tuple[int, ...]][source][source]

Returns a key for a tensor, (onnx dtype, shape).

report(outputs: Dict[str, torch.Tensor]) List[Tuple[Tuple[int, str], str | Tuple[str, int, str], Dict[str, float | str]]][source][source]

For every tensor in outputs, compares it to every tensor held by this class if it shares the same type and shape. The function returns the results of the comparison. The function also collects the results into a dictionary the user can retrieve later.

property value: Dict[Tuple[Tuple[int, str], str | Tuple[str, int, str]], Dict[str, float | str]]

Returns the report.

TorchOnnxEvaluator

class onnx_diagnostic.reference.TorchOnnxEvaluator(proto: FunctionProto | GraphProto | ModelProto, providers: Tuple[str, ...] = ('CPUExecutionProvider',), opsets: Dict[str, int] | None = None, local_functions: Dict[Tuple[str, str], TorchOnnxEvaluator] | None = None, verbose: int = 0, custom_kernels: Dict[Tuple[str, str], type[OpRunKernel]] | None = None)[source][source]

Torch evaluator for onnx models. The model does not stores the original proto it evaluates to avoid

Parameters:
  • proto – a proto

  • providers – where to run the model

  • opsets – needed if proto is a graph

  • functions – known local functions

  • verbose – verbosity level

  • custom_kernels – dictionary of kernels the user can defined to overwrite a specific implementation: ("", "LayerNormalization"): CustomKernel

The class holds the following attributes:

  • providers: providers

  • default_device: default torch device

  • constants: all initializers or constants

  • kernels: kernels

  • runtime_info: produced by first_used_last_used

  • last_used: contains the list of intermediate results,

    to remove after every node execution, this avoid the memory to grow too much

  • functions: local functions

The class is not multithreaded. runtime_info gets updated by the the class. The list of available kernels is returned by function onnx_diagnostic.reference.torch_evaluator.get_kernels(). Example:

<<<

import onnx
import onnx.helper as oh
import torch
from onnx_diagnostic.helpers import string_type
from onnx_diagnostic.reference import TorchOnnxEvaluator

TFLOAT = onnx.TensorProto.FLOAT

proto = oh.make_model(
    oh.make_graph(
        [
            oh.make_node("Sigmoid", ["Y"], ["sy"]),
            oh.make_node("Mul", ["Y", "sy"], ["ysy"]),
            oh.make_node("Mul", ["X", "ysy"], ["final"]),
        ],
        "-nd-",
        [
            oh.make_tensor_value_info("X", TFLOAT, [1, "b", "c"]),
            oh.make_tensor_value_info("Y", TFLOAT, ["a", "b", "c"]),
        ],
        [oh.make_tensor_value_info("final", TFLOAT, ["a", "b", "c"])],
    ),
    opset_imports=[oh.make_opsetid("", 18)],
    ir_version=9,
)

sess = TorchOnnxEvaluator(proto)
feeds = dict(X=torch.rand((4, 5)), Y=torch.rand((4, 5)))
result = sess.run(None, feeds)
print(string_type(result, with_shape=True, with_min_max=True))

>>>

    #1[T1s4x5[0.0008138369885273278,0.6871630549430847:A0.16783959880995097]]

With verbose=1, the class prints out every kernel run and and every result deleted along the run. It shows when a result is not needed anymore. In that case, it is deleted to free the memory it takes.

<<<

import onnx
import onnx.helper as oh
import torch
from onnx_diagnostic.helpers import string_type
from onnx_diagnostic.reference import TorchOnnxEvaluator

TFLOAT = onnx.TensorProto.FLOAT

proto = oh.make_model(
    oh.make_graph(
        [
            oh.make_node("Sigmoid", ["Y"], ["sy"]),
            oh.make_node("Mul", ["Y", "sy"], ["ysy"]),
            oh.make_node("Mul", ["X", "ysy"], ["final"]),
        ],
        "-nd-",
        [
            oh.make_tensor_value_info("X", TFLOAT, [1, "b", "c"]),
            oh.make_tensor_value_info("Y", TFLOAT, ["a", "b", "c"]),
        ],
        [oh.make_tensor_value_info("final", TFLOAT, ["a", "b", "c"])],
    ),
    opset_imports=[oh.make_opsetid("", 18)],
    ir_version=9,
)

sess = TorchOnnxEvaluator(proto, verbose=1)
feeds = dict(X=torch.rand((4, 5)), Y=torch.rand((4, 5)))
result = sess.run(None, feeds)
print(string_type(result, with_shape=True, with_min_max=True))

>>>

    +I X: RuntimeValue(name='X', kind=5, shape=(4, 5), value=CT1s4x5[0.03517788648605347,0.9756187200546265:A0.5196456760168076])
    +I Y: RuntimeValue(name='Y', kind=5, shape=(4, 5), value=CT1s4x5[0.0884142518043518,0.9336427450180054:A0.5218727320432663])
    Sigmoid_6(Y) -> sy
    +R sy: RuntimeValue(name='sy', kind=1, shape=(4, 5), is_shape=False, value=CT1s4x5[0.5220891833305359,0.7178137302398682:A0.6259762525558472])
    Mul_1(Y, sy) -> ysy
    +R ysy: RuntimeValue(name='ysy', kind=1, shape=(4, 5), is_shape=False, value=CT1s4x5[0.046160124242305756,0.6701815724372864:A0.33883077949285506])
    - clean Y
    - clean sy
    Mul_1(X, ysy) -> final
    +R final: RuntimeValue(name='final', kind=9, shape=(4, 5), is_shape=False, value=CT1s4x5[0.0038967039436101913,0.5731149911880493:A0.1838728933595121])
    - clean X
    - clean ysy
    ++ outputs final
    - clean X
    - clean Y
    - clean final
    #1[T1s4x5[0.0038967039436101913,0.5731149911880493:A0.1838728933595121]]

The runtime can also execute the kernel the onnx model on CUDA. It follows the same logic as onnxruntime.InferenceSession: providers=["CUDAExecutionProvider"]. It is better in that case to move the input on CUDA. The class tries to move every weight on CUDA but tries to keep any tensor identified as a shape in CPU. Some bugs may remain as torch raises an exception when devices are expected to be the same. The runtime was validated with model arnir0/Tiny-LLM. Next example shows how to replace a kernel with a different one based on onnxruntime.

<<<

import numpy as np
import onnx
import onnx.helper as oh
import onnxruntime
import torch
from onnx_diagnostic.helpers import string_type
from onnx_diagnostic.helpers.torch_helper import onnx_dtype_to_torch_dtype
from onnx_diagnostic.reference import TorchOnnxEvaluator
from onnx_diagnostic.reference.torch_ops import OpRunKernel, OpRunTensor

TFLOAT16 = onnx.TensorProto.FLOAT16


class LayerNormalizationOrt(OpRunKernel):
    "LayerNormalization based on onnxruntime"

    def __init__(self, node: onnx.NodeProto, version=None, verbose=0):
        super().__init__(node, version, verbose=verbose)
        self.axis = self.get_attribute_int(node, "axis", -1)
        self.epsilon = self.get_attribute_float(node, "epsilon", 1e-5)
        self.stash_type = onnx_dtype_to_torch_dtype(
            self.get_attribute_int(node, "stash_type", onnx.TensorProto.FLOAT)
        )
        self.compute_std = len(node.output) > 1
        assert not self.compute_std, "The keren only computes the first output."
        layer_model = oh.make_model(
            oh.make_graph(
                [
                    oh.make_node(
                        "LayerNormalization",
                        ["X", "W", "B"],
                        ["Z"],
                        axis=-1,
                        epsilon=9.999999974752427e-7,
                    )
                ],
                "dummy",
                [
                    oh.make_tensor_value_info("X", TFLOAT16, ["b", "c", "d"]),
                    oh.make_tensor_value_info("W", TFLOAT16, ["d"]),
                    oh.make_tensor_value_info("B", TFLOAT16, ["d"]),
                ],
                [oh.make_tensor_value_info("Z", TFLOAT16, ["b", "c", "d"])],
            ),
            ir_version=9,
            opset_imports=[oh.make_opsetid("", 17)],
        )
        self.ort_sess = onnxruntime.InferenceSession(
            layer_model.SerializeToString(), providers=["CUDAExecutionProvider"]
        )

    def run(self, x, scale, bias=None):
        print(f"-- running {self.__class__.__name__}")
        feeds = dict(X=x, W=scale)
        if bias is not None:
            feeds["B"] = bias
        feeds = {k: v.tensor.detach().cpu().numpy() for k, v in feeds.items()}
        got = self.ort_sess.run(None, feeds)[0]
        return OpRunTensor(torch.from_numpy(got).to(x.dtype).to(x.device))


# This kernel is tested on this model.
model = oh.make_model(
    oh.make_graph(
        [
            oh.make_node(
                "LayerNormalization",
                ["X", "W", "B"],
                ["ln"],
                axis=-1,
                epsilon=9.999999974752427e-7,
            ),
            oh.make_node(
                "Add", ["ln", "W"], ["Z"], axis=-1, epsilon=9.999999974752427e-7
            ),
        ],
        "dummy",
        [
            oh.make_tensor_value_info("X", TFLOAT16, ["b", "c", "d"]),
            oh.make_tensor_value_info("W", TFLOAT16, ["d"]),
            oh.make_tensor_value_info("B", TFLOAT16, ["d"]),
        ],
        [oh.make_tensor_value_info("Z", TFLOAT16, ["b", "c", "d"])],
    ),
    ir_version=9,
    opset_imports=[oh.make_opsetid("", 17)],
)

torch_sess = TorchOnnxEvaluator(
    model,
    custom_kernels={("", "LayerNormalization"): LayerNormalizationOrt},
    verbose=1,
)
feeds = dict(
    zip(
        torch_sess.input_names,
        [
            torch.rand(3, 4, 5, dtype=torch.float16),
            torch.abs(torch.rand(5, dtype=torch.float16)),
            torch.rand(5, dtype=torch.float16),
        ],
    )
)
res = torch_sess.run(None, feeds)
print(string_type(res, with_shape=True, with_min_max=True))

>>>

    +I X: RuntimeValue(name='X', kind=5, shape=(3, 4, 5), value=CT10s3x4x5[0.01513671875,0.97216796875:A0.5118408203125])
    +I W: RuntimeValue(name='W', kind=5, shape=(5,), value=CT10s5[0.0087890625,0.67724609375:A0.30283203125])
    +I B: RuntimeValue(name='B', kind=5, shape=(5,), value=CT10s5[0.025390625,0.845703125:A0.34404296875])
    LayerNormalizationOrt(X, W, B) -> ln
    -- running LayerNormalizationOrt
    +R ln: RuntimeValue(name='ln', kind=1, shape=(3, 4, 5), is_shape=False, value=CT10s3x4x5[-1.052734375,1.5009765625:A0.3087624549865723])
    - clean X
    - clean B
    Add_1(ln, W) -> Z
    +R Z: RuntimeValue(name='Z', kind=9, shape=(3, 4, 5), is_shape=False, value=CT10s3x4x5[-0.37548828125,2.177734375:A0.6115519205729166])
    - clean W
    - clean ln
    ++ outputs Z
    - clean X
    - clean W
    - clean B
    - clean Z
    #1[T10s3x4x5[-0.37548828125,2.177734375:A0.6115519205729166]]
class IO(name: str, type: int, shape: Tuple[int | str, ...])[source][source]
get_inputs()[source][source]

Same API than onnxruntime.

get_outputs()[source][source]

Same API than onnxruntime.

property on_cuda: bool

Tells if the default device is CUDA.

run(outputs: List[str] | None, feeds: Dict[str, Tensor] | Dict[str, ndarray], report_cmp: ReportResultComparison | None = None) List[Tensor | None] | List[ndarray | None][source][source]

Runs the ONNX model.

Parameters:
Returns:

output tensors.

run_with_values(*args: OpRunTensor | None, context: Dict[str, RuntimeValue] | None = None) OpRunValue | Tuple[OpRunValue, ...][source][source]

Runs the ONNX model. The signature is different. This method is called by every kernel hokding a subgraph. The local variables are stored in context.

Parameters:
  • args – inputs

  • context – local context for the execution of subgraphs

Returns:

output OpRunTensor

Other functions