onnx_diagnostic.torch_models.test_helper¶
- onnx_diagnostic.torch_models.test_helper.call_exporter(data: Dict[str, Any], exporter: str, quiet: bool = False, verbose: int = 0, optimization: str | None = None, do_run: bool = False) Tuple[Dict[str, int | float | str], Dict[str, Any]] [source]¶
Calls an exporter on a model; If a patch must be applied, it should be before this functions.
- Parameters:
data – dictionary with all the necessary inputs
exporter – exporter to call
quiet – catch exception or not
verbose – verbosity
patch – apply patches
optimization – optimization to do
do_run – runs and compute discrepancies
- Returns:
two dictionaries, one with some metrics, another one with whatever the function produces
- onnx_diagnostic.torch_models.test_helper.call_torch_export_export(data: Dict[str, Any], exporter: str, quiet: bool = False, verbose: int = 0, optimization: str | None = None, do_run: bool = False)[source]¶
Calls an exporter on a model; If a patch must be applied, it should be before this functions.
- Parameters:
data – dictionary with all the necessary inputs
exporter – exporter to call
quiet – catch exception or not
verbose – verbosity
patch – apply patches
optimization – optimization to do
do_run – runs and compute discrepancies
- Returns:
two dictionaries, one with some metrics, another one with whatever the function produces
- onnx_diagnostic.torch_models.test_helper.empty(value: Any) bool [source]¶
Tells if the value is empty.
- onnx_diagnostic.torch_models.test_helper.get_inputs_for_task(task: str, config: Any | None = None) Dict[str, Any] [source]¶
Returns dummy inputs for a specific task.
- Parameters:
task – requested task
config – returns dummy inputs for a specific config if available
- Returns:
dummy inputs and dynamic shapes
- onnx_diagnostic.torch_models.test_helper.split_args_kwargs(inputs: Any) Tuple[Tuple[Any, ...], Dict[str, Any]] [source]¶
Splits into args, kwargs.
- onnx_diagnostic.torch_models.test_helper.validate_model(model_id: str, task: str | None = None, do_run: bool = False, exporter: str | None = None, do_same: bool = False, verbose: int = 0, dtype: str | dtype | None = None, device: str | device | None = None, trained: bool = False, optimization: str | None = None, quiet: bool = False, patch: bool = False, dump_folder: str | None = None) Tuple[Dict[str, int | float | str], Dict[str, Any]] [source]¶
Validates a model.
- Parameters:
model_id – model id to validate
task – task used to generate the necessary inputs, can be left empty to use the default task for this model if it can be determined
do_run – checks the model works with the defined inputs
exporter – exporter the model using this exporter, available list:
export-strict
,export-nostrict
,onnx
do_same – checks the discrepancies of the exported model
verbose – verbosity level
dtype – uses this dtype to check the model
device – do the verification on this device
trained – use the trained model, not the untrained one
optimization – optimization to apply to the exported model, depend on the the exporter
quiet – if quiet, catches exception if any issue
patch – applies patches before exporting
dump_folder – dumps everything in a subfolder of this one
- Returns:
two dictionaries, one with some metrics, another one with whatever the function produces