Note
Go to the end to download the full example code
Measuring performance about Gemm with onnxruntime#
The benchmark measures the performance of Gemm for different types and configuration. That includes a custom operator only available on CUDA calling function cublasLtMatmul. This function offers many options.
import pprint
import platform
from itertools import product
import numpy
from tqdm import tqdm
import matplotlib.pyplot as plt
from pandas import DataFrame, pivot_table
from onnx import TensorProto
from onnx.helper import (
make_model,
make_node,
make_graph,
make_tensor_value_info,
make_opsetid,
)
from onnx.checker import check_model
from onnx.numpy_helper import from_array
from onnx.reference import ReferenceEvaluator
from onnxruntime import InferenceSession, SessionOptions, get_available_providers
from onnxruntime.capi._pybind_state import (
OrtValue as C_OrtValue,
OrtDevice as C_OrtDevice,
)
from onnxruntime.capi.onnxruntime_pybind11_state import (
Fail,
NotImplemented,
InvalidGraph,
InvalidArgument,
)
try:
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot
except ImportError:
onnx_simple_text_plot = str
try:
from onnx_extended.reference import CReferenceEvaluator
except ImportError:
CReferenceEvaluator = ReferenceEvaluator
from onnx_extended.args import get_parsed_args
from onnx_extended.ext_test_case import unit_test_going, measure_time
try:
from onnx_extended.validation.cuda.cuda_example_py import get_device_prop
from onnx_extended.ortops.tutorial.cuda import get_ort_ext_libs
has_cuda = True
except ImportError:
def get_device_prop():
return {"name": "CPU"}
def get_ort_ext_libs():
return None
has_cuda = False
default_dims = (
"32,32,32;64,64,64;128,128,128;256,256,256;"
"400,400,400;512,512,512;1024,1024,1024"
)
if has_cuda:
prop = get_device_prop()
if prop.get("major", 0) >= 7:
default_dims += ";2048,2048,2048;4096,4096,4096"
if prop.get("major", 0) >= 9:
default_dims += ";16384,16384,16384"
script_args = get_parsed_args(
"plot_bench_gemm_ort",
description=__doc__,
dims=(
"32,32,32;64,64,64" if unit_test_going() else default_dims,
"square matrix dimensions to try, comma separated values",
),
types=(
"FLOAT" if unit_test_going() else "FLOAT8E4M3FN,FLOAT,FLOAT16,BFLOAT16",
"element type to teest",
),
number=2 if unit_test_going() else 4,
repeat=2 if unit_test_going() else 10,
warmup=2 if unit_test_going() else 5,
expose="repeat,number,warmup",
)
Device properties#
if has_cuda:
properties = get_device_prop()
pprint.pprint(properties)
else:
properties = {"major": 0}
{'clockRate': 1569000,
'computeMode': 0,
'concurrentKernels': 1,
'isMultiGpuBoard': 0,
'major': 6,
'maxThreadsPerBlock': 1024,
'minor': 1,
'multiProcessorCount': 10,
'name': 'NVIDIA GeForce GTX 1060',
'sharedMemPerBlock': 49152,
'totalConstMem': 65536,
'totalGlobalMem': 6442319872}
Model to benchmark#
It includes one Gemm. The operator changes. It can the regular Gemm, a custom Gemm from domain com.microsoft or a custom implementation from domain onnx_extented.ortops.tutorial.cuda.
def create_model(
mat_type=TensorProto.FLOAT, provider="CUDAExecutionProvider", domain="com.microsoft"
):
A = make_tensor_value_info("A", mat_type, [None, None])
B = make_tensor_value_info("B", mat_type, [None, None])
outputs = [make_tensor_value_info("C", mat_type, [None, None])]
inits = []
if domain != "":
if provider != "CUDAExecutionProvider":
return None
f8 = False
if domain == "com.microsoft":
op_name = "GemmFloat8"
computeType = "CUBLAS_COMPUTE_32F"
node_output = ["C"]
elif mat_type == TensorProto.FLOAT:
op_name = "CustomGemmFloat"
computeType = "CUBLAS_COMPUTE_32F_FAST_TF32"
node_output = ["C"]
elif mat_type == TensorProto.FLOAT16:
op_name = "CustomGemmFloat16"
computeType = "CUBLAS_COMPUTE_16F"
node_output = ["C"]
elif mat_type in (TensorProto.FLOAT8E4M3FN, TensorProto.FLOAT8E5M2):
f8 = True
op_name = "CustomGemmFloat8E4M3FN"
computeType = "CUBLAS_COMPUTE_32F"
node_output = ["C"]
outputs = [
make_tensor_value_info("C", TensorProto.FLOAT16, [None, None]),
]
inits.append(from_array(numpy.array([1], dtype=numpy.float32), name="I"))
else:
return None
node_kw = dict(
alpha=1.0,
transB=1,
domain=domain,
computeType=computeType,
fastAccumulationMode=1,
rowMajor=0 if op_name.startswith("CustomGemmFloat") else 1,
)
node_kw["name"] = (
f"{mat_type}.{len(node_output)}.{len(outputs)}."
f"{domain}..{node_kw['rowMajor']}.."
f"{node_kw['fastAccumulationMode']}..{node_kw['computeType']}.."
f"{f8}"
)
node_inputs = ["A", "B"]
if f8:
node_inputs.append("")
node_inputs.extend(["I"] * 3)
nodes = [make_node(op_name, node_inputs, node_output, **node_kw)]
else:
nodes = [
make_node("Gemm", ["A", "B"], ["C"], transA=1, beta=0.0),
]
graph = make_graph(nodes, "a", [A, B], outputs, inits)
if mat_type < 16:
# regular type
opset, ir = 18, 8
else:
opset, ir = 19, 9
onnx_model = make_model(
graph,
opset_imports=[
make_opsetid("", opset),
make_opsetid("com.microsoft", 1),
make_opsetid("onnx_extented.ortops.tutorial.cuda", 1),
],
ir_version=ir,
)
check_model(onnx_model)
return onnx_model
print(onnx_simple_text_plot(create_model()))
opset: domain='' version=18
opset: domain='com.microsoft' version=1
opset: domain='onnx_extented.ortops.tutorial.cuda' version=1
input: name='A' type=dtype('float32') shape=['', '']
input: name='B' type=dtype('float32') shape=['', '']
GemmFloat8[com.microsoft](A, B, alpha=1.00, computeType=b'CUBLAS_COMPUTE_32F', fastAccumulationMode=1, rowMajor=1, transB=1) -> C
output: name='C' type=dtype('float32') shape=['', '']
A model to cast into anytype. numpy does not support float 8. onnxruntime is used to cast a float array into any type. It must be called with tensor of type OrtValue.
def create_cast(to, cuda=False):
A = make_tensor_value_info("A", TensorProto.FLOAT, [None, None])
C = make_tensor_value_info("C", to, [None, None])
if cuda:
nodes = [
make_node("Cast", ["A"], ["Cc"], to=to),
make_node("MemcpyFromHost", ["Cc"], ["C"]),
]
else:
nodes = [make_node("Cast", ["A"], ["C"], to=to)]
graph = make_graph(nodes, "a", [A], [C])
if to < 16:
# regular type
opset, ir = 18, 8
else:
opset, ir = 19, 9
onnx_model = make_model(
graph, opset_imports=[make_opsetid("", opset)], ir_version=ir
)
if not cuda:
# OpType: MemcpyFromHost
check_model(onnx_model)
return onnx_model
print(onnx_simple_text_plot(create_cast(TensorProto.FLOAT16)))
opset: domain='' version=18
input: name='A' type=dtype('float32') shape=['', '']
Cast(A, to=10) -> C
output: name='C' type=dtype('float16') shape=['', '']
Performance#
The benchmark will run the following configurations.
types = list(getattr(TensorProto, a) for a in script_args.types.split(","))
engine = [InferenceSession, CReferenceEvaluator]
providers = [
["CUDAExecutionProvider", "CPUExecutionProvider"],
["CPUExecutionProvider"],
]
# M, N, K
# we use multiple of 8, otherwise, float8 does not work.
dims = [list(int(i) for i in line.split(",")) for line in script_args.dims.split(";")]
domains = ["onnx_extented.ortops.tutorial.cuda", "", "com.microsoft"]
Let’s cache the matrices involved.
def to_ort_value(m):
device = C_OrtDevice(C_OrtDevice.cpu(), C_OrtDevice.default_memory(), 0)
ort_value = C_OrtValue.ortvalue_from_numpy(m, device)
return ort_value
def cached_inputs(dims, types):
matrices = {}
matrices_cuda = {}
pbar = tqdm(list(product(dims, types)))
for dim, tt in pbar:
m, n, k = dim
pbar.set_description(f"t={tt} dim={dim}")
for i, j in [(m, k), (k, n), (k, m)]:
if (tt, i, j) in matrices:
continue
# CPU
try:
sess = InferenceSession(
create_cast(tt).SerializeToString(),
providers=["CPUExecutionProvider"],
)
cpu = True
except (InvalidGraph, InvalidArgument, NotImplemented):
# not support by this version of onnxruntime
cpu = False
if cpu:
vect = (numpy.random.randn(i, j) * 10).astype(numpy.float32)
ov = to_ort_value(vect)
ovtt = sess._sess.run_with_ort_values({"A": ov}, ["C"], None)[0]
matrices[tt, i, j] = ovtt
else:
continue
# CUDA
if "CUDAExecutionProvider" not in get_available_providers():
# No CUDA
continue
sess = InferenceSession(
create_cast(tt, cuda=True).SerializeToString(),
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
vect = (numpy.random.randn(i, j) * 10).astype(numpy.float32)
ov = to_ort_value(vect)
ovtt = sess._sess.run_with_ort_values({"A": ov}, ["C"], None)[0]
matrices_cuda[tt, i, j] = ovtt
return matrices, matrices_cuda
matrices, matrices_cuda = cached_inputs(dims, types)
print(f"{len(matrices)} matrices were created.")
0%| | 0/28 [00:00<?, ?it/s]
t=17 dim=[32, 32, 32]: 0%| | 0/28 [00:00<?, ?it/s]
t=1 dim=[32, 32, 32]: 0%| | 0/28 [00:00<?, ?it/s]
t=10 dim=[32, 32, 32]: 0%| | 0/28 [00:00<?, ?it/s]
t=10 dim=[32, 32, 32]: 11%|█ | 3/28 [00:00<00:01, 21.29it/s]
t=16 dim=[32, 32, 32]: 11%|█ | 3/28 [00:00<00:01, 21.29it/s]
t=17 dim=[64, 64, 64]: 11%|█ | 3/28 [00:00<00:01, 21.29it/s]
t=1 dim=[64, 64, 64]: 11%|█ | 3/28 [00:00<00:01, 21.29it/s]
t=1 dim=[64, 64, 64]: 21%|██▏ | 6/28 [00:00<00:01, 18.30it/s]
t=10 dim=[64, 64, 64]: 21%|██▏ | 6/28 [00:00<00:01, 18.30it/s]
t=16 dim=[64, 64, 64]: 21%|██▏ | 6/28 [00:00<00:01, 18.30it/s]
t=16 dim=[64, 64, 64]: 29%|██▊ | 8/28 [00:00<00:01, 17.77it/s]
t=17 dim=[128, 128, 128]: 29%|██▊ | 8/28 [00:00<00:01, 17.77it/s]
t=1 dim=[128, 128, 128]: 29%|██▊ | 8/28 [00:00<00:01, 17.77it/s]
t=1 dim=[128, 128, 128]: 36%|███▌ | 10/28 [00:00<00:01, 15.60it/s]
t=10 dim=[128, 128, 128]: 36%|███▌ | 10/28 [00:00<00:01, 15.60it/s]
t=16 dim=[128, 128, 128]: 36%|███▌ | 10/28 [00:00<00:01, 15.60it/s]
t=16 dim=[128, 128, 128]: 43%|████▎ | 12/28 [00:00<00:01, 15.74it/s]
t=17 dim=[256, 256, 256]: 43%|████▎ | 12/28 [00:00<00:01, 15.74it/s]
t=1 dim=[256, 256, 256]: 43%|████▎ | 12/28 [00:00<00:01, 15.74it/s]
t=1 dim=[256, 256, 256]: 50%|█████ | 14/28 [00:00<00:00, 14.86it/s]
t=10 dim=[256, 256, 256]: 50%|█████ | 14/28 [00:00<00:00, 14.86it/s]
t=16 dim=[256, 256, 256]: 50%|█████ | 14/28 [00:00<00:00, 14.86it/s]
t=16 dim=[256, 256, 256]: 57%|█████▋ | 16/28 [00:00<00:00, 15.32it/s]
t=17 dim=[400, 400, 400]: 57%|█████▋ | 16/28 [00:00<00:00, 15.32it/s]
t=1 dim=[400, 400, 400]: 57%|█████▋ | 16/28 [00:01<00:00, 15.32it/s]
t=1 dim=[400, 400, 400]: 64%|██████▍ | 18/28 [00:01<00:00, 14.27it/s]
t=10 dim=[400, 400, 400]: 64%|██████▍ | 18/28 [00:01<00:00, 14.27it/s]
t=16 dim=[400, 400, 400]: 64%|██████▍ | 18/28 [00:01<00:00, 14.27it/s]
t=16 dim=[400, 400, 400]: 71%|███████▏ | 20/28 [00:01<00:00, 13.50it/s]
t=17 dim=[512, 512, 512]: 71%|███████▏ | 20/28 [00:01<00:00, 13.50it/s]
t=1 dim=[512, 512, 512]: 71%|███████▏ | 20/28 [00:01<00:00, 13.50it/s]
t=1 dim=[512, 512, 512]: 79%|███████▊ | 22/28 [00:01<00:00, 13.12it/s]
t=10 dim=[512, 512, 512]: 79%|███████▊ | 22/28 [00:01<00:00, 13.12it/s]
t=16 dim=[512, 512, 512]: 79%|███████▊ | 22/28 [00:01<00:00, 13.12it/s]
t=16 dim=[512, 512, 512]: 86%|████████▌ | 24/28 [00:01<00:00, 12.95it/s]
t=17 dim=[1024, 1024, 1024]: 86%|████████▌ | 24/28 [00:01<00:00, 12.95it/s]
t=1 dim=[1024, 1024, 1024]: 86%|████████▌ | 24/28 [00:01<00:00, 12.95it/s]
t=1 dim=[1024, 1024, 1024]: 93%|█████████▎| 26/28 [00:02<00:00, 8.00it/s]
t=10 dim=[1024, 1024, 1024]: 93%|█████████▎| 26/28 [00:02<00:00, 8.00it/s]
t=16 dim=[1024, 1024, 1024]: 93%|█████████▎| 26/28 [00:02<00:00, 8.00it/s]
t=16 dim=[1024, 1024, 1024]: 100%|██████████| 28/28 [00:02<00:00, 6.44it/s]
t=16 dim=[1024, 1024, 1024]: 100%|██████████| 28/28 [00:02<00:00, 10.91it/s]
28 matrices were created.
Let’s run the benchmark
def rendering_obs(obs, dim, number, repeat, domain, provider, internal_time):
stype = {
TensorProto.FLOAT: "f32",
TensorProto.FLOAT16: "f16",
TensorProto.BFLOAT16: "bf16",
TensorProto.INT8: "i8",
TensorProto.INT16: "i16",
TensorProto.INT32: "i32",
TensorProto.UINT32: "u32",
TensorProto.FLOAT8E4M3FN: "e4m3fn",
TensorProto.FLOAT8E5M2: "e5m2",
}[tt]
obs.update(
dict(
engine={"InferenceSession": "ort", "CReferenceEvaluator": "np"}[
engine.__name__
],
stype=stype,
type=f"{stype}",
M=dim[0],
N=dim[1],
K=dim[2],
cost=numpy.prod(dim) * 4,
cost_s=f"{numpy.prod(dim) * 4}-{dim[0]}x{dim[1]}x{dim[2]}",
repeat=repeat,
number=number,
domain={
"": "ORT",
"com.microsoft": "COM",
"onnx_extented.ortops.tutorial.cuda": "EXT",
}[domain],
provider={
"CPUExecutionProvider": "cpu",
"CUDAExecutionProvider": "cuda",
}[provider[0]],
platform=platform.processor(),
intime=internal_time,
)
)
return obs
opts = SessionOptions()
r = get_ort_ext_libs()
if r is not None:
opts.register_custom_ops_library(r[0])
data = []
errors = []
pbar = tqdm(list(product(types, engine, providers, dims, domains)))
for tt, engine, provider, dim, domain in pbar:
if (
tt in {TensorProto.FLOAT8E4M3FN, TensorProto.FLOAT8E5M2}
and properties.get("major", 0) < 9
):
# f8 not available
if provider[0] == "CPUExecutionProvider":
continue
errors.append(
f"f8 not available, major={properties.get('major', 0)}, "
f"tt={tt}, provider={provider!r}, domain={domain!r}."
)
continue
elif provider[0] == "CPUExecutionProvider" and max(dim) > 2000:
# too long
continue
if max(dim) <= 200:
repeat, number = script_args.repeat * 4, script_args.number * 4
elif max(dim) <= 256:
repeat, number = script_args.repeat * 2, script_args.number * 2
else:
repeat, number = script_args.repeat, script_args.number
onx = create_model(tt, provider=provider[0], domain=domain)
if onx is None:
if provider[0] == "CPUExecutionProvider":
continue
errors.append(
f"No model for tt={tt}, provider={provider!r}, domain={domain!r}."
)
continue
with open(f"plot_bench_gemm_ort_{tt}_{domain}.onnx", "wb") as f:
f.write(onx.SerializeToString())
k1 = (tt, dim[2], dim[0])
k2 = (tt, dim[2], dim[1])
if k1 not in matrices:
errors.append(f"Key k1={k1!r} not in matrices.")
continue
if k2 not in matrices:
errors.append(f"Key k2={k2!r} not in matrices.")
continue
pbar.set_description(f"t={tt} e={engine.__name__} p={provider[0][:4]} dim={dim}")
if engine == CReferenceEvaluator:
if (
domain != ""
or max(dim) > 256
or provider != ["CPUExecutionProvider"]
or tt not in [TensorProto.FLOAT, TensorProto.FLOAT16]
):
# All impossible or slow cases.
continue
if tt == TensorProto.FLOAT16 and max(dim) > 50:
repeat, number = 2, 2
feeds = {"A": matrices[k1].numpy(), "B": matrices[k2].numpy()}
sess = engine(onx)
sess.run(None, feeds)
obs = measure_time(lambda: sess.run(None, feeds), repeat=repeat, number=number)
elif engine == InferenceSession:
if provider[0] not in get_available_providers():
errors.append(f"provider={provider[0]} is missing")
continue
try:
sess = engine(onx.SerializeToString(), opts, providers=provider)
except (NotImplemented, InvalidGraph, Fail) as e:
# not implemented
errors.append((tt, engine.__class__.__name__, provider, domain, e))
continue
the_feeds = (
{"A": matrices[k1], "B": matrices[k2]}
if provider == ["CPUExecutionProvider"]
else {"A": matrices_cuda[k1], "B": matrices_cuda[k2]}
)
out_names = ["C"]
# warmup
for i in range(script_args.warmup):
sess._sess.run_with_ort_values(the_feeds, out_names, None)[0]
# benchamrk
times = []
def fct_benchmarked():
got = sess._sess.run_with_ort_values(the_feeds, out_names, None)
if len(got) > 1:
times.append(got[1])
obs = measure_time(fct_benchmarked, repeat=repeat, number=number)
internal_time = None
if times:
np_times = [t.numpy() for t in times]
internal_time = (sum(np_times) / len(times))[0]
else:
errors.append(f"unknown engine={engine}")
continue
# improves the rendering
obs = rendering_obs(obs, dim, number, repeat, domain, provider, internal_time)
data.append(obs)
if unit_test_going() and len(data) >= 2:
break
0%| | 0/336 [00:00<?, ?it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 0%| | 0/336 [00:00<?, ?it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 25%|██▌ | 85/336 [00:02<00:08, 28.39it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 25%|██▌ | 85/336 [00:02<00:08, 28.39it/s]
t=1 e=InferenceSession p=CUDA dim=[32, 32, 32]: 25%|██▌ | 85/336 [00:03<00:08, 28.39it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 25%|██▌ | 85/336 [00:03<00:08, 28.39it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 26%|██▌ | 88/336 [00:06<00:21, 11.75it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 26%|██▌ | 88/336 [00:06<00:21, 11.75it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 26%|██▌ | 88/336 [00:06<00:21, 11.75it/s]
t=1 e=InferenceSession p=CUDA dim=[64, 64, 64]: 27%|██▋ | 90/336 [00:06<00:21, 11.43it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 90/336 [00:06<00:21, 11.43it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 91/336 [00:09<00:41, 5.95it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 91/336 [00:09<00:41, 5.95it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 92/336 [00:09<00:41, 5.86it/s]
t=1 e=InferenceSession p=CUDA dim=[128, 128, 128]: 27%|██▋ | 92/336 [00:09<00:41, 5.86it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 27%|██▋ | 92/336 [00:09<00:41, 5.86it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 94/336 [00:10<00:46, 5.20it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 94/336 [00:10<00:46, 5.20it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 95/336 [00:10<00:45, 5.36it/s]
t=1 e=InferenceSession p=CUDA dim=[256, 256, 256]: 28%|██▊ | 95/336 [00:10<00:45, 5.36it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 28%|██▊ | 95/336 [00:10<00:45, 5.36it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 29%|██▉ | 97/336 [00:10<00:41, 5.70it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 29%|██▉ | 97/336 [00:10<00:41, 5.70it/s]
t=1 e=InferenceSession p=CUDA dim=[400, 400, 400]: 29%|██▉ | 97/336 [00:10<00:41, 5.70it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 29%|██▉ | 97/336 [00:10<00:41, 5.70it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 30%|██▉ | 100/336 [00:10<00:37, 6.23it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 30%|██▉ | 100/336 [00:10<00:37, 6.23it/s]
t=1 e=InferenceSession p=CUDA dim=[512, 512, 512]: 30%|██▉ | 100/336 [00:11<00:37, 6.23it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 30%|██▉ | 100/336 [00:11<00:37, 6.23it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 103/336 [00:11<00:39, 5.97it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 103/336 [00:11<00:39, 5.97it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 104/336 [00:11<00:41, 5.59it/s]
t=1 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 31%|███ | 104/336 [00:11<00:41, 5.59it/s]
t=1 e=InferenceSession p=CPUE dim=[32, 32, 32]: 31%|███ | 104/336 [00:11<00:41, 5.59it/s]
t=1 e=InferenceSession p=CPUE dim=[64, 64, 64]: 31%|███ | 104/336 [00:11<00:41, 5.59it/s]
t=1 e=InferenceSession p=CPUE dim=[128, 128, 128]: 31%|███ | 104/336 [00:11<00:41, 5.59it/s]
t=1 e=InferenceSession p=CPUE dim=[128, 128, 128]: 34%|███▎ | 113/336 [00:11<00:17, 12.65it/s]
t=1 e=InferenceSession p=CPUE dim=[256, 256, 256]: 34%|███▎ | 113/336 [00:11<00:17, 12.65it/s]
t=1 e=InferenceSession p=CPUE dim=[400, 400, 400]: 34%|███▎ | 113/336 [00:11<00:17, 12.65it/s]
t=1 e=InferenceSession p=CPUE dim=[400, 400, 400]: 35%|███▌ | 119/336 [00:12<00:12, 17.01it/s]
t=1 e=InferenceSession p=CPUE dim=[512, 512, 512]: 35%|███▌ | 119/336 [00:12<00:12, 17.01it/s]
t=1 e=InferenceSession p=CPUE dim=[512, 512, 512]: 37%|███▋ | 123/336 [00:12<00:11, 18.70it/s]
t=1 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 37%|███▋ | 123/336 [00:12<00:11, 18.70it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 37%|███▋ | 123/336 [00:13<00:11, 18.70it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[64, 64, 64]: 38%|███▊ | 127/336 [00:13<00:25, 8.30it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[64, 64, 64]: 45%|████▌ | 152/336 [00:13<00:07, 25.52it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 45%|████▌ | 152/336 [00:13<00:07, 25.52it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 45%|████▌ | 152/336 [00:20<00:07, 25.52it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 48%|████▊ | 160/336 [00:22<00:51, 3.41it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[400, 400, 400]: 48%|████▊ | 160/336 [00:22<00:51, 3.41it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[512, 512, 512]: 48%|████▊ | 160/336 [00:22<00:51, 3.41it/s]
t=1 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 48%|████▊ | 160/336 [00:22<00:51, 3.41it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 48%|████▊ | 160/336 [00:22<00:51, 3.41it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 50%|█████ | 169/336 [00:25<00:51, 3.22it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 50%|█████ | 169/336 [00:25<00:51, 3.22it/s]
t=10 e=InferenceSession p=CUDA dim=[32, 32, 32]: 50%|█████ | 169/336 [00:25<00:51, 3.22it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 50%|█████ | 169/336 [00:25<00:51, 3.22it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 50%|█████ | 169/336 [00:28<00:51, 3.22it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 51%|█████▏ | 173/336 [00:28<01:01, 2.67it/s]
t=10 e=InferenceSession p=CUDA dim=[64, 64, 64]: 51%|█████▏ | 173/336 [00:28<01:01, 2.67it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 51%|█████▏ | 173/336 [00:28<01:01, 2.67it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 51%|█████▏ | 173/336 [00:30<01:01, 2.67it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 52%|█████▏ | 176/336 [00:30<01:09, 2.30it/s]
t=10 e=InferenceSession p=CUDA dim=[128, 128, 128]: 52%|█████▏ | 176/336 [00:30<01:09, 2.30it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 52%|█████▏ | 176/336 [00:30<01:09, 2.30it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 53%|█████▎ | 178/336 [00:31<01:06, 2.37it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 53%|█████▎ | 178/336 [00:31<01:06, 2.37it/s]
t=10 e=InferenceSession p=CUDA dim=[256, 256, 256]: 53%|█████▎ | 178/336 [00:31<01:06, 2.37it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 53%|█████▎ | 178/336 [00:31<01:06, 2.37it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 54%|█████▍ | 181/336 [00:31<00:56, 2.74it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 54%|█████▍ | 181/336 [00:31<00:56, 2.74it/s]
t=10 e=InferenceSession p=CUDA dim=[400, 400, 400]: 54%|█████▍ | 181/336 [00:31<00:56, 2.74it/s]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 54%|█████▍ | 181/336 [00:31<00:56, 2.74it/s]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 55%|█████▍ | 184/336 [00:32<00:48, 3.13it/s]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 55%|█████▍ | 184/336 [00:32<00:48, 3.13it/s]
t=10 e=InferenceSession p=CUDA dim=[512, 512, 512]: 55%|█████▍ | 184/336 [00:32<00:48, 3.13it/s]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 55%|█████▍ | 184/336 [00:32<00:48, 3.13it/s]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 187/336 [00:34<01:00, 2.47it/s]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 187/336 [00:34<01:00, 2.47it/s]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 188/336 [00:34<00:56, 2.62it/s]
t=10 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 56%|█████▌ | 188/336 [00:34<00:56, 2.62it/s]
t=10 e=InferenceSession p=CPUE dim=[32, 32, 32]: 56%|█████▌ | 188/336 [00:34<00:56, 2.62it/s]
t=10 e=InferenceSession p=CPUE dim=[64, 64, 64]: 56%|█████▌ | 188/336 [00:34<00:56, 2.62it/s]
t=10 e=InferenceSession p=CPUE dim=[128, 128, 128]: 56%|█████▌ | 188/336 [00:34<00:56, 2.62it/s]
t=10 e=InferenceSession p=CPUE dim=[128, 128, 128]: 59%|█████▊ | 197/336 [00:34<00:26, 5.31it/s]
t=10 e=InferenceSession p=CPUE dim=[256, 256, 256]: 59%|█████▊ | 197/336 [00:34<00:26, 5.31it/s]
t=10 e=InferenceSession p=CPUE dim=[256, 256, 256]: 60%|█████▉ | 200/336 [00:35<00:22, 6.10it/s]
t=10 e=InferenceSession p=CPUE dim=[400, 400, 400]: 60%|█████▉ | 200/336 [00:35<00:22, 6.10it/s]
t=10 e=InferenceSession p=CPUE dim=[400, 400, 400]: 60%|██████ | 203/336 [00:35<00:17, 7.49it/s]
t=10 e=InferenceSession p=CPUE dim=[512, 512, 512]: 60%|██████ | 203/336 [00:35<00:17, 7.49it/s]
t=10 e=InferenceSession p=CPUE dim=[512, 512, 512]: 61%|██████▏ | 206/336 [00:35<00:15, 8.45it/s]
t=10 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 61%|██████▏ | 206/336 [00:35<00:15, 8.45it/s]
t=10 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 62%|██████▏ | 209/336 [00:36<00:24, 5.23it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 69%|██████▉ | 233/336 [00:36<00:05, 18.05it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[64, 64, 64]: 69%|██████▉ | 233/336 [00:36<00:05, 18.05it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 69%|██████▉ | 233/336 [00:36<00:05, 18.05it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 71%|███████ | 239/336 [00:36<00:04, 20.96it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 71%|███████ | 239/336 [00:36<00:04, 20.96it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 73%|███████▎ | 244/336 [00:37<00:05, 15.52it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[400, 400, 400]: 73%|███████▎ | 244/336 [00:37<00:05, 15.52it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[512, 512, 512]: 73%|███████▎ | 244/336 [00:37<00:05, 15.52it/s]
t=10 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 73%|███████▎ | 244/336 [00:37<00:05, 15.52it/s]
t=16 e=InferenceSession p=CUDA dim=[32, 32, 32]: 73%|███████▎ | 244/336 [00:37<00:05, 15.52it/s]
t=16 e=InferenceSession p=CUDA dim=[32, 32, 32]: 76%|███████▌ | 254/336 [00:37<00:03, 21.63it/s]
t=16 e=InferenceSession p=CUDA dim=[32, 32, 32]: 76%|███████▌ | 254/336 [00:37<00:03, 21.63it/s]
t=16 e=InferenceSession p=CUDA dim=[64, 64, 64]: 76%|███████▌ | 254/336 [00:37<00:03, 21.63it/s]
t=16 e=InferenceSession p=CUDA dim=[64, 64, 64]: 76%|███████▌ | 254/336 [00:37<00:03, 21.63it/s]
t=16 e=InferenceSession p=CUDA dim=[64, 64, 64]: 77%|███████▋ | 259/336 [00:37<00:03, 22.53it/s]
t=16 e=InferenceSession p=CUDA dim=[128, 128, 128]: 77%|███████▋ | 259/336 [00:37<00:03, 22.53it/s]
t=16 e=InferenceSession p=CUDA dim=[128, 128, 128]: 77%|███████▋ | 259/336 [00:38<00:03, 22.53it/s]
t=16 e=InferenceSession p=CUDA dim=[256, 256, 256]: 77%|███████▋ | 259/336 [00:38<00:03, 22.53it/s]
t=16 e=InferenceSession p=CUDA dim=[256, 256, 256]: 78%|███████▊ | 263/336 [00:38<00:03, 19.60it/s]
t=16 e=InferenceSession p=CUDA dim=[256, 256, 256]: 78%|███████▊ | 263/336 [00:38<00:03, 19.60it/s]
t=16 e=InferenceSession p=CUDA dim=[400, 400, 400]: 78%|███████▊ | 263/336 [00:38<00:03, 19.60it/s]
t=16 e=InferenceSession p=CUDA dim=[400, 400, 400]: 78%|███████▊ | 263/336 [00:38<00:03, 19.60it/s]
t=16 e=InferenceSession p=CUDA dim=[512, 512, 512]: 78%|███████▊ | 263/336 [00:38<00:03, 19.60it/s]
t=16 e=InferenceSession p=CUDA dim=[512, 512, 512]: 80%|████████ | 269/336 [00:38<00:02, 22.72it/s]
t=16 e=InferenceSession p=CUDA dim=[512, 512, 512]: 80%|████████ | 269/336 [00:38<00:02, 22.72it/s]
t=16 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 80%|████████ | 269/336 [00:38<00:02, 22.72it/s]
t=16 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 80%|████████ | 269/336 [00:38<00:02, 22.72it/s]
t=16 e=InferenceSession p=CUDA dim=[1024, 1024, 1024]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=InferenceSession p=CPUE dim=[32, 32, 32]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=InferenceSession p=CPUE dim=[64, 64, 64]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=InferenceSession p=CPUE dim=[128, 128, 128]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=InferenceSession p=CPUE dim=[256, 256, 256]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=InferenceSession p=CPUE dim=[400, 400, 400]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=InferenceSession p=CPUE dim=[512, 512, 512]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=InferenceSession p=CPUE dim=[1024, 1024, 1024]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[32, 32, 32]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[64, 64, 64]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[128, 128, 128]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[256, 256, 256]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[400, 400, 400]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[512, 512, 512]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CUDA dim=[1024, 1024, 1024]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[32, 32, 32]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[64, 64, 64]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[128, 128, 128]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[256, 256, 256]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[400, 400, 400]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[512, 512, 512]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 81%|████████▏ | 273/336 [00:38<00:03, 19.46it/s]
t=16 e=CReferenceEvaluator p=CPUE dim=[1024, 1024, 1024]: 100%|██████████| 336/336 [00:38<00:00, 8.67it/s]
Results#
0 1 2 3 4
average 0.004122 0.000284 0.004653 0.000396 0.00421
deviation 0.000578 0.000109 0.000309 0.000153 0.000347
min_exec 0.003197 0.000182 0.004109 0.000242 0.003513
max_exec 0.005962 0.000624 0.005381 0.000805 0.00502
repeat 40 40 40 40 40
number 16 16 16 16 16
ttime 0.164877 0.011356 0.186115 0.015823 0.16838
context_size 64 64 64 64 64
warmup_time 0.004435 0.000249 0.004432 0.001938 0.004779
engine ort ort ort ort ort
stype f32 f32 f32 f32 f32
type f32 f32 f32 f32 f32
M 32 32 64 64 128
N 32 32 64 64 128
K 32 32 64 64 128
cost 131072 131072 1048576 1048576 8388608
cost_s 131072-32x32x32 131072-32x32x32 1048576-64x64x64 1048576-64x64x64 8388608-128x128x128
domain EXT ORT EXT ORT EXT
provider cuda cuda cuda cuda cuda
platform x86_64 x86_64 x86_64 x86_64 x86_64
intime None None None None None
The errors#
1/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
2/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
3/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
4/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
5/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
6/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
7/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
8/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
9/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
10/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
11/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
12/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
13/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
14/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
15/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
16/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
17/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
18/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
19/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
20/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
21/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
22/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
23/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
24/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
25/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
26/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
27/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
28/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
29/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
30/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
31/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
32/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
33/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
34/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
35/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
36/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
37/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
38/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
39/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
40/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
41/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain=''.
42/84-f8 not available, major=6, tt=17, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='com.microsoft'.
43/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
44/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
45/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
46/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
47/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
48/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
49/84-(1, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("1.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float),"B": tensor(float),) -> ("C": tensor(float),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
50/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
51/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
52/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
53/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
54/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
55/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
56/84-(10, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("10.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(float16),"B": tensor(float16),) -> ("C": tensor(float16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
57/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
58/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
59/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
60/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
61/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
62/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
63/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
64/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
65/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
66/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
67/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
68/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
69/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
70/84-(16, 'type', ['CUDAExecutionProvider', 'CPUExecutionProvider'], 'com.microsoft', InvalidGraph('[ONNXRuntimeError] : 10 : INVALID_GRAPH : This is an invalid model. In Node, ("16.1.1.com.microsoft..1..1..CUBLAS_COMPUTE_32F..False", GemmFloat8, "com.microsoft", -1) : ("A": tensor(bfloat16),"B": tensor(bfloat16),) -> ("C": tensor(bfloat16),) , Error Unrecognized attribute: rowMajor for operator GemmFloat8'))
71/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
72/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
73/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
74/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
75/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
76/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
77/84-(16, 'type', ['CPUExecutionProvider'], '', NotImplemented("[ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for Gemm(13) node with name ''"))
78/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
79/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
80/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
81/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
82/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
83/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
84/84-No model for tt=16, provider=['CUDAExecutionProvider', 'CPUExecutionProvider'], domain='onnx_extented.ortops.tutorial.cuda'.
Summary#
piv = pivot_table(
df,
index=["cost"],
columns=["provider", "type", "domain", "engine"],
values=["average", "intime"],
)
piv.reset_index(drop=False).to_excel("plot_bench_gemm_ort_summary.xlsx")
piv.reset_index(drop=False).to_csv("plot_bench_gemm_ort_summary.csv")
print("summary")
print(piv)
piv
summary
average
provider cpu cuda
type f16 f32 bf16 f16 f32
domain ORT ORT ORT EXT ORT EXT ORT
engine np ort np ort ort ort ort ort ort
cost
131072 0.000329 0.000041 0.000063 0.000021 0.000213 0.004686 0.000230 0.004122 0.000284
1048576 0.002264 0.000056 0.000093 0.000027 0.000265 0.004055 0.000198 0.004653 0.000396
8388608 0.016651 0.000431 0.010302 0.000067 0.000340 0.003477 0.000246 0.004210 0.000344
67108864 0.105103 0.001192 0.012554 0.000359 0.000442 0.003870 0.000379 0.004425 0.000601
256000000 NaN 0.002023 NaN 0.001319 0.000965 0.006882 0.000638 0.004817 0.001246
536870912 NaN 0.004482 NaN 0.003123 0.001387 0.009471 0.001042 0.005571 0.001722
4294967296 NaN 0.025175 NaN 0.025415 0.005542 0.042594 0.003411 0.009730 0.005438
With the dimensions.
pivs = pivot_table(
df,
index=["cost_s"],
columns=["provider", "type", "domain", "engine"],
values=["average", "intime"],
)
print(pivs)
average
provider cpu cuda
type f16 f32 bf16 f16 f32
domain ORT ORT ORT EXT ORT EXT ORT
engine np ort np ort ort ort ort ort ort
cost_s
1048576-64x64x64 0.002264 0.000056 0.000093 0.000027 0.000265 0.004055 0.000198 0.004653 0.000396
131072-32x32x32 0.000329 0.000041 0.000063 0.000021 0.000213 0.004686 0.000230 0.004122 0.000284
256000000-400x400x400 NaN 0.002023 NaN 0.001319 0.000965 0.006882 0.000638 0.004817 0.001246
4294967296-1024x1024x1024 NaN 0.025175 NaN 0.025415 0.005542 0.042594 0.003411 0.009730 0.005438
536870912-512x512x512 NaN 0.004482 NaN 0.003123 0.001387 0.009471 0.001042 0.005571 0.001722
67108864-256x256x256 0.105103 0.001192 0.012554 0.000359 0.000442 0.003870 0.000379 0.004425 0.000601
8388608-128x128x128 0.016651 0.000431 0.010302 0.000067 0.000340 0.003477 0.000246 0.004210 0.000344
plot
dfi = df[
df.type.isin({"f32", "f16", "bf16", "e4m3fn", "e5m2"}) & df.engine.isin({"ort"})
]
pivi = pivot_table(
dfi,
index=["cost"],
columns=["type", "domain", "provider", "engine"],
values="average",
)
fig, ax = plt.subplots(1, 2, figsize=(12, 6))
piv.plot(ax=ax[0], title="Gemm performance\nlower is better", logx=True, logy=True)
if pivi.shape[0] > 0:
pivi.plot(
ax=ax[1],
title=f"Gemm performance ORT\n{platform.processor()}",
logx=True,
logy=True,
)
fig.tight_layout()
fig.savefig("plot_bench_gemm_ort.png")
Total running time of the script: (0 minutes 44.327 seconds)