Cython Binding of onnxruntime#
onnxruntime implements a python API based on pybind11.
This API is custom and does not leverage the C API.
This package implements class
OrtSession
.
The bindings is based on cython which faster.
The difference is significant when onnxruntime deals with small tensors.
<<<
import numpy
from onnx import TensorProto
from onnx.helper import (
make_model,
make_node,
make_graph,
make_tensor_value_info,
make_opsetid,
)
from onnx_extended.ortcy.wrap.ortinf import OrtSession
X = make_tensor_value_info("X", TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None, None])
Z = make_tensor_value_info("Z", TensorProto.FLOAT, [None, None])
node = make_node("Add", ["X", "Y"], ["Z"])
graph = make_graph([node], "add", [X, Y], [Z])
onnx_model = make_model(graph, opset_imports=[make_opsetid("", 18)], ir_version=8)
with open("model.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
session = OrtSession("model.onnx")
x = numpy.random.randn(2, 3).astype(numpy.float32)
y = numpy.random.randn(2, 3).astype(numpy.float32)
got = session.run([x, y])
print(got)
>>>
[array([[ 1.115, 0.825, -0.608],
[ 1.607, -0.358, -1.482]], dtype=float32)]
The signature is different compare to onnxruntime
session.run(None, {"X": x, "Y": y})
to increase performance.
This binding supports custom operators as well.
A benchmark Measuring onnxruntime performance against a cython binding compares
onnxruntime to this new binding.