Contents Menu Expand Light mode Dark mode Auto light/dark mode
onnx-extended 0.2.3 documentation
Logo
onnx-extended 0.2.3 documentation

Contents

  • Tutorial
    • Build
      • Build with cython
      • Build with pybind11
      • Build with CUDA
      • Build with onnxruntime
    • CReferenceEvaluator
    • Cython Binding of onnxruntime
    • Custom Kernels for onnxruntime
    • Many Tools
      • External Data and Big Models
      • Onnx Manipulations
      • Quantization
      • Profiling onnxruntime
      • Debug Intermediate Results
      • Compare multiple versions of onnxruntime
      • Trees
    • Examples
      • Measuring CPU performance
      • Measuring CPU performance with a vector sum
      • Measuring CPU performance with a parallelized vector sum
      • Measuring CPU performance with a parallelized vector sum and AVX
      • Measuring CPU/GPU performance with a vector sum
    • Conv
      • Using C implementation of operator Conv
      • How float format has an impact on speed computation
      • Measuring Gemm performance with different input and output tests
      • Measuring performance about Gemm with onnxruntime
      • Profiles a simple onnx graph including a singleGemm
      • TreeEnsemble optimization
  • API
    • check
    • ext_test_case
    • helper
    • ortcy
    • ortops
      • ortops.tutorial
      • ortops.optim
    • reference
    • validation.cpu
    • validation.cuda
    • validation.bench_trees
    • tools
      • Shortcuts
      • tools.graph
      • tools.graph.onnx_graph_transformer
      • tools.onnx_nodes
      • Other tools
    • command lines
  • Technical Details
    • Install CUDA on WSL (2)
    • Useful commands on Linux
    • Gemm and storage order
    • 2023-09-05 - version GLIBCXX_3.4.30 not found
  • ONNX Benchmarks
  • Examples Gallery
    • Measuring CPU performance with a vector sum
    • Measuring CPU performance with a parallelized vector sum
    • Measuring CPU performance with a parallelized vector sum and AVX
    • Measuring CPU performance
    • Using C implementation of operator Conv
    • Measuring onnxruntime performance against a cython binding
    • Measuring CPU/GPU performance with a vector sum
    • Measuring Gemm performance with different input and output tests
    • How float format has an impact on speed computation
    • TreeEnsemble optimization
    • Profiles a simple onnx graph including a singleGemm
    • Measuring performance about Gemm with onnxruntime

More

  • Change Logs
  • LICENSE
Back to top

tools#

  • Shortcuts
    • IO
    • onnx2string
    • save_model
    • string2onnx
  • tools.graph
    • NodeKind
    • Node
    • NodeWithSubGraph
    • NodeSet
    • Graph
  • tools.graph.onnx_graph_transformer
    • cast_constant
    • QuantizeOptions
    • quantize_float8
    • TransformResults
    • QuantizationError
  • tools.onnx_nodes
    • convert_onnx_model
    • enumerate_onnx_node_types
    • get_hidden_inputs
    • multiply_tree
    • onnx_merge_models
    • onnx_remove_node_unused
    • select_model_inputs_outputs
  • Other tools
    • Debugging
    • Profiling
    • Testing
Next
Shortcuts
Previous
validation.bench_trees
Copyright © 2023, Xavier Dupré
Made with Sphinx and @pradyunsg's Furo