Measuring CPU performance with a parallelized vector sum and AVX#

The example compares the time spend in computing the sum of all coefficients of a matrix when the function walks through the coefficients by rows or by columns when the computation is parallelized or uses AVX instructions.

Vector Sum#

from tqdm import tqdm
import numpy
import matplotlib.pyplot as plt
from pandas import DataFrame
from onnx_extended.ext_test_case import measure_time, unit_test_going
from onnx_extended.validation.cpu._validation import (
    vector_sum_array as vector_sum,
    vector_sum_array_parallel as vector_sum_parallel,
    vector_sum_array_avx as vector_sum_avx,
    vector_sum_array_avx_parallel as vector_sum_avx_parallel,
)

obs = []
dims = [500, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000]
if unit_test_going():
    dims = dims[:2]
for dim in tqdm(dims):
    values = numpy.ones((dim, dim), dtype=numpy.float32).ravel()
    diff = abs(vector_sum(dim, values, True) - dim**2)

    res = measure_time(lambda: vector_sum(dim, values, True), max_time=0.5)

    obs.append(
        dict(
            dim=dim,
            size=values.size,
            time=res["average"],
            direction="rows",
            time_per_element=res["average"] / dim**2,
            diff=diff,
        )
    )

    res = measure_time(lambda: vector_sum_parallel(dim, values, True), max_time=0.5)

    obs.append(
        dict(
            dim=dim,
            size=values.size,
            time=res["average"],
            direction="rows//",
            time_per_element=res["average"] / dim**2,
            diff=diff,
        )
    )

    diff = abs(vector_sum_avx(dim, values) - dim**2)
    res = measure_time(lambda: vector_sum_avx(dim, values), max_time=0.5)

    obs.append(
        dict(
            dim=dim,
            size=values.size,
            time=res["average"],
            direction="avx",
            time_per_element=res["average"] / dim**2,
            diff=diff,
        )
    )

    diff = abs(vector_sum_avx_parallel(dim, values) - dim**2)
    res = measure_time(lambda: vector_sum_avx_parallel(dim, values), max_time=0.5)

    obs.append(
        dict(
            dim=dim,
            size=values.size,
            time=res["average"],
            direction="avx//",
            time_per_element=res["average"] / dim**2,
            diff=diff,
        )
    )


df = DataFrame(obs)
piv = df.pivot(index="dim", columns="direction", values="time_per_element")
print(piv)
  0%|          | 0/14 [00:00<?, ?it/s]
  7%|7         | 1/14 [00:06<01:25,  6.60s/it]
 14%|#4        | 2/14 [00:22<02:23, 11.93s/it]
 21%|##1       | 3/14 [00:38<02:32, 13.85s/it]
 29%|##8       | 4/14 [00:43<01:43, 10.32s/it]
 36%|###5      | 5/14 [00:50<01:23,  9.30s/it]
 43%|####2     | 6/14 [00:59<01:13,  9.19s/it]
 50%|#####     | 7/14 [01:05<00:56,  8.06s/it]
 57%|#####7    | 8/14 [01:13<00:47,  7.90s/it]
 64%|######4   | 9/14 [01:15<00:31,  6.29s/it]
 71%|#######1  | 10/14 [01:18<00:21,  5.26s/it]
 79%|#######8  | 11/14 [01:21<00:13,  4.34s/it]
 86%|########5 | 12/14 [01:23<00:07,  3.75s/it]
 93%|#########2| 13/14 [01:28<00:04,  4.10s/it]
100%|##########| 14/14 [01:32<00:00,  4.16s/it]
100%|##########| 14/14 [01:32<00:00,  6.62s/it]
direction           avx         avx//          rows        rows//
dim
500        2.124341e-10  2.970035e-09  1.415554e-09  8.919709e-09
700        1.472835e-10  2.119565e-09  1.403033e-09  6.208487e-09
800        1.821257e-10  2.282421e-09  1.513690e-09  5.536130e-09
900        4.354594e-10  1.834429e-09  2.839234e-09  6.489717e-09
1000       6.261898e-10  1.790831e-09  3.901196e-09  5.061805e-09
1100       8.991476e-10  1.502097e-09  2.668395e-09  4.909074e-09
1200       1.228392e-09  1.332833e-09  3.610501e-09  4.859514e-09
1300       1.006782e-09  2.078401e-09  2.328450e-09  4.445881e-09
1400       6.657746e-10  5.622565e-09  2.554591e-09  3.542308e-09
1500       7.966057e-10  4.039738e-09  2.743586e-09  3.729478e-09
1600       3.986791e-10  1.298015e-09  3.199657e-09  2.493390e-09
1700       4.674480e-10  1.629045e-09  1.810117e-09  1.461178e-09
1800       5.678262e-10  2.122750e-09  2.106633e-09  2.333242e-09
2000       1.260421e-09  2.016133e-09  2.736361e-09  4.461474e-09

Plots#

piv_diff = df.pivot(index="dim", columns="direction", values="diff")
piv_time = df.pivot(index="dim", columns="direction", values="time")

fig, ax = plt.subplots(1, 3, figsize=(12, 6))
piv.plot(ax=ax[0], logx=True, title="Comparison between two summation")
piv_diff.plot(ax=ax[1], logx=True, logy=True, title="Summation errors")
piv_time.plot(ax=ax[2], logx=True, logy=True, title="Total time")
fig.savefig("plot_bench_cpu_vector_sum_avx_parallel.png")
Comparison between two summation, Summation errors, Total time

AVX is faster.

Total running time of the script: ( 1 minutes 36.823 seconds)

Gallery generated by Sphinx-Gallery