Heap#
La structure heap ou tas en français est utilisée pour trier. Elle peut également servir à obtenir les k premiers éléments d’une liste.
Un tas est peut être considéré comme un tableau qui vérifie une condition assez simple, pour tout indice , alors . On en déduit nécessairement que le premier élément du tableau est le plus grand. Maintenant comment transformer un tableau en un autre qui respecte cette contrainte ?
[2]:
%matplotlib inline
Transformer en tas#
[3]:
def swap(tab, i, j):
"Echange deux éléments."
tab[i], tab[j] = tab[j], tab[i]
def entas(heap):
"Organise un ensemble selon un tas."
modif = 1
while modif > 0:
modif = 0
i = len(heap) - 1
while i > 0:
root = (i - 1) // 2
if heap[root] < heap[i]:
swap(heap, root, i)
modif += 1
i -= 1
return heap
ens = [1, 2, 3, 4, 7, 10, 5, 6, 11, 12, 3]
entas(ens)
[3]:
[12, 11, 5, 10, 7, 3, 1, 6, 4, 3, 2]
Comme ce n’est pas facile de vérifer que c’est un tas, on le dessine.
Dessiner un tas#
[4]:
from teachpyx.tools import draw_diagram
def dessine_tas(heap):
rows = ["blockdiag {"]
for i, v in enumerate(heap):
if i * 2 + 1 < len(heap):
rows.append(
'"[{}]={}" -> "[{}]={}";'.format(i, heap[i], i * 2 + 1, heap[i * 2 + 1])
)
if i * 2 + 2 < len(heap):
rows.append(
'"[{}]={}" -> "[{}]={}";'.format(
i, heap[i], i * 2 + 2, heap[i * 2 + 2]
)
)
rows.append("}")
return draw_diagram("\n".join(rows))
ens = [1, 2, 3, 4, 7, 10, 5, 6, 11, 12, 3]
dessine_tas(entas(ens))
[4]:
Le nombre entre crochets est la position, l’autre nombre est la valeur à cette position. Cette représentation fait apparaître une structure d’arbre binaire.
Première version#
[5]:
def swap(tab, i, j):
"Echange deux éléments."
tab[i], tab[j] = tab[j], tab[i]
def _heapify_max_bottom(heap):
"Organise un ensemble selon un tas."
modif = 1
while modif > 0:
modif = 0
i = len(heap) - 1
while i > 0:
root = (i - 1) // 2
if heap[root] < heap[i]:
swap(heap, root, i)
modif += 1
i -= 1
def _heapify_max_up(heap):
"Organise un ensemble selon un tas."
i = 0
while True:
left = 2 * i + 1
right = left + 1
if right < len(heap):
if heap[left] > heap[i] >= heap[right]:
swap(heap, i, left)
i = left
elif heap[right] > heap[i]:
swap(heap, i, right)
i = right
else:
break
elif left < len(heap) and heap[left] > heap[i]:
swap(heap, i, left)
i = left
else:
break
def topk_min(ens, k):
"Retourne les k plus petits éléments d'un ensemble."
heap = ens[:k]
_heapify_max_bottom(heap)
for el in ens[k:]:
if el < heap[0]:
heap[0] = el
_heapify_max_up(heap)
return heap
ens = [1, 2, 3, 4, 7, 10, 5, 6, 11, 12, 3]
for k in range(1, len(ens) - 1):
print(k, topk_min(ens, k))
1 [1]
2 [2, 1]
3 [3, 2, 1]
4 [3, 3, 1, 2]
5 [4, 3, 1, 3, 2]
6 [5, 4, 3, 3, 2, 1]
7 [5, 6, 3, 4, 2, 3, 1]
8 [5, 7, 3, 6, 2, 3, 1, 4]
9 [5, 10, 3, 7, 2, 3, 1, 6, 4]
Même chose avec les indices au lieu des valeurs#
[6]:
def _heapify_max_bottom_position(ens, pos):
"Organise un ensemble selon un tas."
modif = 1
while modif > 0:
modif = 0
i = len(pos) - 1
while i > 0:
root = (i - 1) // 2
if ens[pos[root]] < ens[pos[i]]:
swap(pos, root, i)
modif += 1
i -= 1
def _heapify_max_up_position(ens, pos):
"Organise un ensemble selon un tas."
i = 0
while True:
left = 2 * i + 1
right = left + 1
if right < len(pos):
if ens[pos[left]] > ens[pos[i]] >= ens[pos[right]]:
swap(pos, i, left)
i = left
elif ens[pos[right]] > ens[pos[i]]:
swap(pos, i, right)
i = right
else:
break
elif left < len(pos) and ens[pos[left]] > ens[pos[i]]:
swap(pos, i, left)
i = left
else:
break
def topk_min_position(ens, k):
"Retourne les positions des k plus petits éléments d'un ensemble."
pos = list(range(k))
_heapify_max_bottom_position(ens, pos)
for i, el in enumerate(ens[k:]):
if el < ens[pos[0]]:
pos[0] = k + i
_heapify_max_up_position(ens, pos)
return pos
ens = [1, 2, 3, 7, 10, 4, 5, 6, 11, 12, 3]
for k in range(1, len(ens) - 1):
pos = topk_min_position(ens, k)
print(k, pos, [ens[i] for i in pos])
1 [0] [1]
2 [1, 0] [2, 1]
3 [2, 1, 0] [3, 2, 1]
4 [10, 2, 0, 1] [3, 3, 1, 2]
5 [5, 10, 0, 2, 1] [4, 3, 1, 3, 2]
6 [6, 5, 2, 10, 1, 0] [5, 4, 3, 3, 2, 1]
7 [5, 7, 10, 6, 1, 2, 0] [4, 6, 3, 5, 2, 3, 1]
8 [5, 3, 10, 7, 1, 2, 0, 6] [4, 7, 3, 6, 2, 3, 1, 5]
9 [5, 4, 10, 3, 1, 2, 0, 7, 6] [4, 10, 3, 7, 2, 3, 1, 6, 5]
[7]:
import numpy.random as rnd
X = rnd.randn(10000)
%timeit topk_min(X, 20)
3.87 ms ± 553 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
[8]:
%timeit topk_min_position(X, 20)
3.4 ms ± 372 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Coût de l’algorithme#
[9]:
from tqdm import tqdm
from pandas import DataFrame
from teachpyx.ext_test_case import measure_time
rows = []
for n in tqdm(list(range(1000, 20001, 1000))):
X = rnd.randn(n)
res = measure_time(
"topk_min_position(X, 100)",
{"X": X, "topk_min_position": topk_min_position},
div_by_number=True,
number=10,
)
res["size"] = n
rows.append(res)
df = DataFrame(rows)
df.head()
100%|██████████| 20/20 [00:09<00:00, 2.01it/s]
[9]:
average | deviation | min_exec | max_exec | repeat | number | ttime | context_size | warmup_time | size | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.001400 | 0.000271 | 0.001090 | 0.001892 | 10 | 10 | 0.014000 | 232 | 0.001138 | 1000 |
1 | 0.002110 | 0.000517 | 0.001622 | 0.003214 | 10 | 10 | 0.021104 | 232 | 0.001633 | 2000 |
2 | 0.001967 | 0.000299 | 0.001747 | 0.002545 | 10 | 10 | 0.019669 | 232 | 0.002969 | 3000 |
3 | 0.002692 | 0.000611 | 0.002081 | 0.003779 | 10 | 10 | 0.026925 | 232 | 0.003983 | 4000 |
4 | 0.003096 | 0.000276 | 0.002660 | 0.003578 | 10 | 10 | 0.030960 | 232 | 0.003305 | 5000 |
[10]:
import matplotlib.pyplot as plt
df[["size", "average"]].set_index("size").plot()
plt.title("Coût topk en fonction de la taille du tableau");
A peu près linéaire comme attendu.
[11]:
from tqdm import tqdm
from teachpyx.ext_test_case import measure_time
rows = []
X = rnd.randn(10000)
for k in tqdm(list(range(500, 2001, 150))):
res = measure_time(
"topk_min_position(X, k)",
{"X": X, "topk_min_position": topk_min_position, "k": k},
div_by_number=True,
number=5,
)
res["k"] = k
rows.append(res)
df = DataFrame(rows)
df.head()
100%|██████████| 11/11 [00:08<00:00, 1.33it/s]
[11]:
average | deviation | min_exec | max_exec | repeat | number | ttime | context_size | warmup_time | k | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.008493 | 0.001842 | 0.006837 | 0.013038 | 10 | 5 | 0.084926 | 232 | 0.014053 | 500 |
1 | 0.009114 | 0.002111 | 0.007600 | 0.013480 | 10 | 5 | 0.091137 | 232 | 0.022466 | 650 |
2 | 0.011651 | 0.003198 | 0.008757 | 0.017215 | 10 | 5 | 0.116511 | 232 | 0.010779 | 800 |
3 | 0.011374 | 0.001973 | 0.009725 | 0.016044 | 10 | 5 | 0.113739 | 232 | 0.012545 | 950 |
4 | 0.016104 | 0.003647 | 0.011865 | 0.022728 | 10 | 5 | 0.161042 | 232 | 0.018794 | 1100 |
[12]:
df[["k", "average"]].set_index("k").plot()
plt.title("Coût topk en fonction de k");
Pas évident, au pire en , au mieux en .
Version simplifiée#
A-t-on vraiment besoin de _heapify_max_bottom_position
?
[13]:
def _heapify_max_up_position_simple(ens, pos, first):
"Organise un ensemble selon un tas."
i = first
while True:
left = 2 * i + 1
right = left + 1
if right < len(pos):
if ens[pos[left]] > ens[pos[i]] >= ens[pos[right]]:
swap(pos, i, left)
i = left
elif ens[pos[right]] > ens[pos[i]]:
swap(pos, i, right)
i = right
else:
break
elif left < len(pos) and ens[pos[left]] > ens[pos[i]]:
swap(pos, i, left)
i = left
else:
break
def topk_min_position_simple(ens, k):
"Retourne les positions des k plus petits éléments d'un ensemble."
pos = list(range(k))
pos[k - 1] = 0
for i in range(1, k):
pos[k - i - 1] = i
_heapify_max_up_position_simple(ens, pos, k - i - 1)
for i, el in enumerate(ens[k:]):
if el < ens[pos[0]]:
pos[0] = k + i
_heapify_max_up_position_simple(ens, pos, 0)
return pos
ens = [1, 2, 3, 7, 10, 4, 5, 6, 11, 12, 3]
for k in range(1, len(ens) - 1):
pos = topk_min_position_simple(ens, k)
print(k, pos, [ens[i] for i in pos])
1 [0] [1]
2 [1, 0] [2, 1]
3 [2, 1, 0] [3, 2, 1]
4 [10, 2, 1, 0] [3, 3, 2, 1]
5 [5, 10, 2, 1, 0] [4, 3, 3, 2, 1]
6 [5, 6, 10, 2, 1, 0] [4, 5, 3, 3, 2, 1]
7 [6, 7, 10, 5, 2, 1, 0] [5, 6, 3, 4, 3, 2, 1]
8 [5, 4, 10, 7, 6, 2, 1, 0] [4, 10, 3, 6, 5, 3, 2, 1]
9 [3, 4, 6, 5, 7, 10, 2, 1, 0] [7, 10, 5, 4, 6, 3, 3, 2, 1]
[14]:
X = rnd.randn(10000)
%timeit topk_min_position_simple(X, 20)
3.79 ms ± 1.13 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
[ ]:
[ ]: