Source code for onnx_extended.reference.c_reference_evaluator

from typing import Any, Dict, List, Optional, Union

from onnx import FunctionProto, ModelProto
from onnx.defs import get_schema
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
from onnx_extended.reference.c_ops.c_op_conv import Conv
from onnx_extended.reference.c_ops.c_op_tree_ensemble_regressor import (
    TreeEnsembleRegressor_1,
    TreeEnsembleRegressor_3,
)
from onnx_extended.reference.c_ops.c_op_tree_ensemble_classifier import (
    TreeEnsembleClassifier_1,
    TreeEnsembleClassifier_3,
)


[docs]class CReferenceEvaluator(ReferenceEvaluator): """ This class replaces the python implementation by C implementation for a short list of operators quite slow in python (such as `Conv`). The class automatically replaces a python implementation by a C implementation if available. See example :ref:`l-example-conv`. :: from onnx.reference import ReferenceEvaluator from from onnx.reference.c_ops import Conv ref = ReferenceEvaluator(..., new_ops=[Conv]) """ default_ops = [ Conv, TreeEnsembleClassifier_1, TreeEnsembleClassifier_3, TreeEnsembleRegressor_1, TreeEnsembleRegressor_3, ] @staticmethod def filter_ops(proto, new_ops, opsets): if opsets is None and isinstance(proto, (ModelProto, FunctionProto)): opsets = {d.domain: d.version for d in proto.opset_import} best = {} renamed = {} for cl in new_ops: if "_" not in cl.__name__: continue vers = cl.__name__.split("_") try: v = int(vers[-1]) except ValueError: # not a version continue if opsets is not None and v > opsets.get(cl.op_domain, 1): continue renamed[cl.__name__] = cl key = cl.op_domain, "_".join(vers[:-1]) if key not in best or best[key][0] < v: best[key] = (v, cl) modified = [] for cl in new_ops: if cl.__name__ not in renamed: modified.append(cl) for k, v in best.items(): atts = {"domain": k[0]} bases = (v[1],) if not hasattr(v[1], "op_schema"): atts["op_schema"] = get_schema(k[1], v[0], domain=v[1].op_domain) new_cl = type(k[1], bases, atts) modified.append(new_cl) new_ops = modified return new_ops def __init__( self, proto: Any, opsets: Optional[Dict[str, int]] = None, functions: Optional[List[Union[ReferenceEvaluator, FunctionProto]]] = None, verbose: int = 0, new_ops: Optional[List[OpRun]] = None, **kwargs, ): if new_ops is None: new_ops = CReferenceEvaluator.default_ops else: new_ops = new_ops.copy() new_ops.extend(CReferenceEvaluator.default_ops) new_ops = CReferenceEvaluator.filter_ops(proto, new_ops, opsets) ReferenceEvaluator.__init__( self, proto, opsets=opsets, functions=functions, verbose=verbose, new_ops=new_ops, **kwargs, )