Note
Go to the end to download the full example code
Measuring CPU performance with a parallelized vector sum and AVX#
The example compares the time spend in computing the sum of all coefficients of a matrix when the function walks through the coefficients by rows or by columns when the computation is parallelized or uses AVX instructions.
Vector Sum#
from tqdm import tqdm
import numpy
import matplotlib.pyplot as plt
from pandas import DataFrame
from onnx_extended.ext_test_case import measure_time, unit_test_going
from onnx_extended.validation.cpu._validation import (
vector_sum_array as vector_sum,
vector_sum_array_parallel as vector_sum_parallel,
vector_sum_array_avx as vector_sum_avx,
vector_sum_array_avx_parallel as vector_sum_avx_parallel,
)
obs = []
dims = [500, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 2000]
if unit_test_going():
dims = dims[:2]
for dim in tqdm(dims):
values = numpy.ones((dim, dim), dtype=numpy.float32).ravel()
diff = abs(vector_sum(dim, values, True) - dim**2)
res = measure_time(lambda: vector_sum(dim, values, True), max_time=0.5)
obs.append(
dict(
dim=dim,
size=values.size,
time=res["average"],
direction="rows",
time_per_element=res["average"] / dim**2,
diff=diff,
)
)
res = measure_time(lambda: vector_sum_parallel(dim, values, True), max_time=0.5)
obs.append(
dict(
dim=dim,
size=values.size,
time=res["average"],
direction="rows//",
time_per_element=res["average"] / dim**2,
diff=diff,
)
)
diff = abs(vector_sum_avx(dim, values) - dim**2)
res = measure_time(lambda: vector_sum_avx(dim, values), max_time=0.5)
obs.append(
dict(
dim=dim,
size=values.size,
time=res["average"],
direction="avx",
time_per_element=res["average"] / dim**2,
diff=diff,
)
)
diff = abs(vector_sum_avx_parallel(dim, values) - dim**2)
res = measure_time(lambda: vector_sum_avx_parallel(dim, values), max_time=0.5)
obs.append(
dict(
dim=dim,
size=values.size,
time=res["average"],
direction="avx//",
time_per_element=res["average"] / dim**2,
diff=diff,
)
)
df = DataFrame(obs)
piv = df.pivot(index="dim", columns="direction", values="time_per_element")
print(piv)
0%| | 0/14 [00:00<?, ?it/s]
7%|7 | 1/14 [00:02<00:31, 2.41s/it]
14%|#4 | 2/14 [00:04<00:28, 2.40s/it]
21%|##1 | 3/14 [00:07<00:26, 2.42s/it]
29%|##8 | 4/14 [00:09<00:23, 2.39s/it]
36%|###5 | 5/14 [00:11<00:20, 2.32s/it]
43%|####2 | 6/14 [00:14<00:18, 2.30s/it]
50%|##### | 7/14 [00:16<00:16, 2.31s/it]
57%|#####7 | 8/14 [00:18<00:13, 2.30s/it]
64%|######4 | 9/14 [00:20<00:11, 2.31s/it]
71%|#######1 | 10/14 [00:23<00:09, 2.37s/it]
79%|#######8 | 11/14 [00:25<00:06, 2.31s/it]
86%|########5 | 12/14 [00:28<00:04, 2.35s/it]
93%|#########2| 13/14 [00:30<00:02, 2.35s/it]
100%|##########| 14/14 [00:32<00:00, 2.40s/it]
100%|##########| 14/14 [00:32<00:00, 2.35s/it]
direction avx avx// rows rows//
dim
500 1.059248e-10 3.865310e-11 1.077842e-09 3.704749e-10
700 1.006593e-10 3.523020e-11 1.047398e-09 2.730899e-10
800 9.975837e-11 3.288589e-11 1.035791e-09 2.779642e-10
900 1.075340e-10 3.163742e-11 1.035512e-09 2.809239e-10
1000 1.050240e-10 3.188596e-11 1.047334e-09 2.752942e-10
1100 1.149290e-10 3.253687e-11 1.058407e-09 3.439727e-10
1200 1.192887e-10 3.193561e-11 1.083497e-09 2.773717e-10
1300 1.397562e-10 3.373039e-11 1.083241e-09 2.680050e-10
1400 1.790026e-10 6.056787e-11 1.084998e-09 2.728521e-10
1500 2.162933e-10 9.248547e-11 1.097359e-09 2.735049e-10
1600 2.360564e-10 2.849613e-10 1.116801e-09 2.784604e-10
1700 2.487883e-10 1.460957e-10 1.166250e-09 3.628977e-10
1800 2.476984e-10 1.279601e-10 1.152840e-09 2.780817e-10
2000 2.595007e-10 1.555451e-10 1.136534e-09 2.659470e-10
Plots#
piv_diff = df.pivot(index="dim", columns="direction", values="diff")
piv_time = df.pivot(index="dim", columns="direction", values="time")
fig, ax = plt.subplots(1, 3, figsize=(12, 6))
piv.plot(ax=ax[0], logx=True, title="Comparison between two summation")
piv_diff.plot(ax=ax[1], logx=True, logy=True, title="Summation errors")
piv_time.plot(ax=ax[2], logx=True, logy=True, title="Total time")
fig.savefig("plot_bench_cpu_vector_sum_avx_parallel.png")
AVX is faster.
Total running time of the script: ( 0 minutes 33.640 seconds)