Source code for onnx_array_api.light_api._op_var

from typing import List, Optional, Union
import numpy as np
from ..reference import from_array_extended
from ..annotations import AI_ONNX_ML, domain


[docs] class OpsVar: """ Operators taking only one input. """ def ArgMax( self, axis: int = 0, keepdims: int = 1, select_last_index: int = 0 ) -> "Var": return self.make_node( "ArgMax", self, axis=axis, keepdims=keepdims, select_last_index=select_last_index, ) def ArgMin( self, axis: int = 0, keepdims: int = 1, select_last_index: int = 0 ) -> "Var": return self.make_node( "ArgMin", self, axis=axis, keepdims=keepdims, select_last_index=select_last_index, ) def AveragePool( self, auto_pad: str = "NOTSET", ceil_mode: int = 0, count_include_pad: int = 0, dilations: Optional[List[int]] = None, kernel_shape: Optional[List[int]] = None, pads: Optional[List[int]] = None, strides: Optional[List[int]] = None, ) -> "Var": dilations = dilations or [] kernel_shape = kernel_shape or [] pads = pads or [] strides = strides or [] return self.make_node( "AveragePool", self, auto_pad=auto_pad, ceil_mode=ceil_mode, count_include_pad=count_include_pad, dilations=dilations, kernel_shape=kernel_shape, pads=pads, strides=strides, ) def Bernoulli(self, dtype: int = 0, seed: float = 0.0) -> "Var": return self.make_node("Bernoulli", self, dtype=dtype, seed=seed) def BlackmanWindow(self, output_datatype: int = 1, periodic: int = 1) -> "Var": return self.make_node( "BlackmanWindow", self, output_datatype=output_datatype, periodic=periodic ) def Cast(self, saturate: int = 1, to: int = 0) -> "Var": return self.make_node("Cast", self, saturate=saturate, to=to) def Celu(self, alpha: float = 1.0) -> "Var": return self.make_node("Celu", self, alpha=alpha) def ConstantOfShape(self, value: Optional[np.array] = None) -> "Var": if value is None: return self.make_node("ConstantOfShape", self) return self.make_node("ConstantOfShape", self, value=from_array_extended(value)) def DepthToSpace(self, blocksize: int = 0, mode: str = "DCR") -> "Var": return self.make_node("DepthToSpace", self, blocksize=blocksize, mode=mode) def DynamicQuantizeLinear( self, ) -> "Vars": return self.make_node( "DynamicQuantizeLinear", self, ) def Elu(self, alpha: float = 1.0) -> "Var": return self.make_node("Elu", self, alpha=alpha) def EyeLike(self, dtype: int = 0, k: int = 0) -> "Var": return self.make_node("EyeLike", self, dtype=dtype, k=k) def Flatten(self, axis: int = 1) -> "Var": return self.make_node("Flatten", self, axis=axis) def GlobalLpPool(self, p: int = 2) -> "Var": return self.make_node("GlobalLpPool", self, p=p) def HammingWindow(self, output_datatype: int = 1, periodic: int = 1) -> "Var": return self.make_node( "HammingWindow", self, output_datatype=output_datatype, periodic=periodic ) def HannWindow(self, output_datatype: int = 1, periodic: int = 1) -> "Var": return self.make_node( "HannWindow", self, output_datatype=output_datatype, periodic=periodic ) def HardSigmoid( self, alpha: float = 0.20000000298023224, beta: float = 0.5 ) -> "Var": return self.make_node("HardSigmoid", self, alpha=alpha, beta=beta) def Hardmax(self, axis: int = -1) -> "Var": return self.make_node("Hardmax", self, axis=axis) def If( self, then_branch: Optional[Union["Var", "Vars", "OnnxGraph"]] = None, else_branch: Optional[Union["Var", "Vars", "OnnxGraph"]] = None, ) -> Union["Var", "Vars"]: attr = {} n_outputs = None for name, att in zip( ["then_branch", "else_branch"], [then_branch, else_branch] ): if att is None: raise ValueError(f"Parameter {name!r} cannot be None.") if hasattr(att, "to_onnx"): # Let's overwrite the opsets. att.parent.opset = self.parent.opset att.parent.opsets = self.parent.opsets graph = att.to_onnx() attr[name] = graph if n_outputs is None: n_outputs = len(graph.output) elif n_outputs != len(graph.output): raise ValueError( "then and else branches have different number of outputs." ) else: raise ValueError(f"Unexpeted type {type(att)} for parameter {name!r}.") return self.make_node("If", self, **attr) def IsInf(self, detect_negative: int = 1, detect_positive: int = 1) -> "Var": return self.make_node( "IsInf", self, detect_negative=detect_negative, detect_positive=detect_positive, ) def LRN( self, alpha: float = 9.999999747378752e-05, beta: float = 0.75, bias: float = 1.0, size: int = 0, ) -> "Var": return self.make_node("LRN", self, alpha=alpha, beta=beta, bias=bias, size=size) def LeakyRelu(self, alpha: float = 0.009999999776482582) -> "Var": return self.make_node("LeakyRelu", self, alpha=alpha) def LogSoftmax(self, axis: int = -1) -> "Var": return self.make_node("LogSoftmax", self, axis=axis) def LpNormalization(self, axis: int = -1, p: int = 2) -> "Var": return self.make_node("LpNormalization", self, axis=axis, p=p) def LpPool( self, auto_pad: str = "NOTSET", ceil_mode: int = 0, dilations: Optional[List[int]] = None, kernel_shape: Optional[List[int]] = None, p: int = 2, pads: Optional[List[int]] = None, strides: Optional[List[int]] = None, ) -> "Var": dilations = dilations or [] kernel_shape = kernel_shape or [] pads = pads or [] strides = strides or [] return self.make_node( "LpPool", self, auto_pad=auto_pad, ceil_mode=ceil_mode, dilations=dilations, kernel_shape=kernel_shape, p=p, pads=pads, strides=strides, ) def MeanVarianceNormalization(self, axes: Optional[List[int]] = None) -> "Var": axes = axes or [0, 2, 3] return self.make_node("MeanVarianceNormalization", self, axes=axes) def Multinomial( self, dtype: int = 6, sample_size: int = 1, seed: float = 0.0 ) -> "Var": return self.make_node( "Multinomial", self, dtype=dtype, sample_size=sample_size, seed=seed ) def RandomNormalLike( self, dtype: int = 0, mean: float = 0.0, scale: float = 1.0, seed: float = 0.0 ) -> "Var": return self.make_node( "RandomNormalLike", self, dtype=dtype, mean=mean, scale=scale, seed=seed ) def RandomUniformLike( self, dtype: int = 0, high: float = 1.0, low: float = 0.0, seed: float = 0.0 ) -> "Var": return self.make_node( "RandomUniformLike", self, dtype=dtype, high=high, low=low, seed=seed ) def ReduceL1(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceL1", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceL2(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceL2", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceLogSum(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceLogSum", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceLogSumExp( self, keepdims: int = 1, noop_with_empty_axes: int = 0 ) -> "Var": return self.make_node( "ReduceLogSumExp", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceMax(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceMax", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceMean(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceMean", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceMin(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceMin", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceProd(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceProd", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceSum(self, keepdims: int = 1, noop_with_empty_axes: int = 0) -> "Var": return self.make_node( "ReduceSum", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def ReduceSumSquare( self, keepdims: int = 1, noop_with_empty_axes: int = 0 ) -> "Var": return self.make_node( "ReduceSumSquare", self, keepdims=keepdims, noop_with_empty_axes=noop_with_empty_axes, ) def Selu( self, alpha: float = 1.6732631921768188, gamma: float = 1.0507010221481323 ) -> "Var": return self.make_node("Selu", self, alpha=alpha, gamma=gamma) def Shrink(self, bias: float = 0.0, lambd: float = 0.5) -> "Var": return self.make_node("Shrink", self, bias=bias, lambd=lambd) def Slice( self, starts: "Var", ends: "Var", axes: "Var", steps: Optional["Var"] = None ) -> "Var": if steps is None: return self.make_node("Slice", self, starts, ends, axes) return self.make_node("Slice", self, starts, ends, axes, steps) def Softmax(self, axis: int = -1) -> "Var": return self.make_node("Softmax", self, axis=axis) def SpaceToDepth(self, blocksize: int = 0) -> "Var": return self.make_node("SpaceToDepth", self, blocksize=blocksize) def ThresholdedRelu(self, alpha: float = 1.0) -> "Var": return self.make_node("ThresholdedRelu", self, alpha=alpha) def Transpose(self, perm: Optional[List[int]] = None) -> "Var": perm = perm or [] return self.make_node("Transpose", self, perm=perm) @domain(AI_ONNX_ML) def Normalizer(self, norm: str = "MAX"): return self.make_node("Normalizer", self, norm=norm, domain=AI_ONNX_ML)
def _complete(): ops_to_add = [ "Abs", "Acos", "Acosh", "Asin", "Asinh", "Atan", "Atanh", "BitwiseNot", "Ceil", "Cos", "Cosh", "Det", "Erf", "Exp", "Floor", "GlobalAveragePool", "GlobalMaxPool", "HardSwish", "Identity", "IsNaN", "Log", "Mish", "Neg", "NonZero", "Not", "Reciprocal", "Relu", "Round", "Shape", "Sigmoid", "Sign", "Sin", "Sinh", "Size", "Softplus", "Softsign", "Sqrt", "Tan", "Tanh", ] for name in ops_to_add: if hasattr(OpsVar, name): continue setattr(OpsVar, name, lambda self, op_type=name: self.make_node(op_type, self)) _complete()