Profiling with onnxruntime

onnxruntime optimizes the onnx graph by default before running the inference. It modifies, fuses or add new operators. Some of them are standard onnx operators, some of them are implemented in onnxruntime (see Supported Operators). This example profiles the two models.

Optimize a model with onnxruntime

import os
import numpy
import matplotlib.pyplot as plt
from onnxruntime import get_available_providers
from onnx_array_api.ext_test_case import example_path
from onnx_array_api.ort.ort_optimizers import ort_optimized_model
from onnx_array_api.ort.ort_profile import ort_profile, merge_ort_profile
from onnx_array_api.plotting.stat_plot import plot_ort_profile


suffix = ""
filename = example_path(f"data/small{suffix}.onnx")
optimized = filename + ".optimized.onnx"
print(f"model={filename!r}")

if not os.path.exists(optimized):
    ort_optimized_model(filename, output=optimized)
print(f"optimized={optimized!r}")
model='data/small.onnx'
optimized='data/small.onnx.optimized.onnx'

Profiling

feeds = {"input": numpy.random.random((1, 3, 112, 112)).astype(numpy.float32)}
prof_base = ort_profile(
    filename,
    feeds,
    repeat=6,
    disable_optimization=True,
    providers=["CPUExecutionProvider"],
)
prof_base.to_excel(f"prof_base{suffix}.xlsx", index=False)
prof_base
cat pid tid dur ts ph name args_op_name op_name args_thread_scheduling_stats args_output_type_shape args_output_size args_parameter_size args_activation_size args_node_index args_input_type_shape args_provider event_name iteration
0 Session 85022 85022 483 3 X model_loading_uri NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN model_loading_uri -1
1 Session 85022 85022 466 518 X session_initialization NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN session_initialization -1
2 Node 85022 85022 0 1139 X n0_fence_before Conv n0 NaN NaN NaN NaN NaN NaN NaN NaN fence_before -1
3 Node 85022 85022 965 1141 X n0_kernel_time Conv n0 {'main_thread': {'thread_pool_name': 'session-... [{'float': [1, 64, 112, 112]}] 3211264 7168 150528 0 [{'float': [1, 3, 112, 112]}, {'float': [64, 3... CPUExecutionProvider kernel_time -1
4 Node 85022 85022 0 2114 X n0_fence_after Conv n0 NaN NaN NaN NaN NaN NaN NaN NaN fence_after -1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
261 Node 85022 85022 0 238872 X n13_fence_before Add n13 NaN NaN NaN NaN NaN NaN NaN NaN fence_before 4
262 Node 85022 85022 70 238873 X n13_kernel_time Add n13 {'main_thread': {'thread_pool_name': 'session-... [{'float': [1, 64, 56, 56]}] 802816 0 1605632 13 [{'float': [1, 64, 56, 56]}, {'float': [1, 64,... CPUExecutionProvider kernel_time 4
263 Node 85022 85022 0 238949 X n13_fence_after Add n13 NaN NaN NaN NaN NaN NaN NaN NaN fence_after 4
264 Session 85022 85022 12851 226101 X SequentialExecutor::Execute NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN SequentialExecutor::Execute 5
265 Session 85022 85022 12876 226084 X model_run NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN model_run 5

266 rows × 19 columns



And the optimized model.

prof_opti = ort_profile(
    optimized,
    feeds,
    repeat=6,
    disable_optimization=True,
    providers=["CPUExecutionProvider"],
)
prof_opti.to_excel(f"prof_opti{suffix}.xlsx", index=False)
prof_opti
cat pid tid dur ts ph name args_op_name op_name args_thread_scheduling_stats args_output_type_shape args_output_size args_parameter_size args_activation_size args_node_index args_input_type_shape args_provider event_name iteration
0 Session 85022 85022 497 2 X model_loading_uri NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN model_loading_uri -1
1 Session 85022 85022 378 525 X session_initialization NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN session_initialization -1
2 Node 85022 85022 0 1023 X r0_nchwc_fence_before Conv r0_nchwc NaN NaN NaN NaN NaN NaN NaN NaN fence_before -1
3 Node 85022 85022 672 1026 X r0_nchwc_kernel_time Conv r0_nchwc {'main_thread': {'thread_pool_name': 'session-... [{'float': [1, 64, 112, 112]}] 3211264 7168 150528 0 [{'float': [1, 3, 112, 112]}, {'float': [64, 3... CPUExecutionProvider kernel_time -1
4 Node 85022 85022 0 1704 X r0_nchwc_fence_after Conv r0_nchwc NaN NaN NaN NaN NaN NaN NaN NaN fence_after -1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
351 Node 85022 85022 0 249744 X ReorderOutput_token_16_fence_before ReorderOutput ReorderOutput_token_16 NaN NaN NaN NaN NaN NaN NaN NaN fence_before 4
352 Node 85022 85022 48 249745 X ReorderOutput_token_16_kernel_time ReorderOutput ReorderOutput_token_16 {'main_thread': {'thread_pool_name': 'session-... [{'float': [1, 64, 56, 56]}] 802816 0 802816 18 [{'float': [1, 64, 56, 56]}] CPUExecutionProvider kernel_time 4
353 Node 85022 85022 0 249796 X ReorderOutput_token_16_fence_after ReorderOutput ReorderOutput_token_16 NaN NaN NaN NaN NaN NaN NaN NaN fence_after 4
354 Session 85022 85022 23834 225966 X SequentialExecutor::Execute NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN SequentialExecutor::Execute 5
355 Session 85022 85022 23860 225951 X model_run NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN model_run 5

356 rows × 19 columns



And the graph is:

unique_op = set(prof_base["args_op_name"])
fig, ax = plt.subplots(2, 2, figsize=(10, len(unique_op)), sharex="col")
plot_ort_profile(prof_base, ax[0, 0], ax[0, 1], title="baseline")
plot_ort_profile(prof_opti, ax[1, 0], ax[1, 1], title="optimized")
fig.tight_layout()
fig.savefig(f"plot_profiling{suffix}.png")
baseline, n occurences, optimized, n occurences

Merging profiles

Let’s try to compare both profiles assuming every iteration process the same image and the input and output size are the same at every iteration.

merge, gr = merge_ort_profile(prof_base, prof_opti)
merge.to_excel(f"plot_profiling_merged{suffix}.xlsx", index=False)
merge
/home/xadupre/github/onnx-array-api/onnx_array_api/ort/ort_profile.py:260: FutureWarning: The provided callable <function sum at 0x7fc0d2399d80> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  .agg(
/home/xadupre/github/onnx-array-api/onnx_array_api/ort/ort_profile.py:260: FutureWarning: The provided callable <function sum at 0x7fc0d2399d80> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  .agg(
args_op_name args_output_type_shape args_input_type_shape args_provider idx durbase countbase duropti countopti
0 Add [{'float': [1, 64, 56, 56]}] [{'float': [1, 64, 56, 56]}, {'float': [1, 64,... CPUExecutionProvider 0 2420.0 6.0 NaN NaN
1 BatchNormalization [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}, {'float': [64]}... CPUExecutionProvider 0 2548.0 6.0 8064.0 6.0
2 Concat [{'float': [1, 2, 112, 112]}] [{'float': [1, 1, 112, 112]}, {'float': [1, 1,... CPUExecutionProvider 0 166.0 6.0 127.0 6.0
3 Conv [{'float': [1, 1, 112, 112]}] [{'float': [1, 2, 112, 112]}, {'float': [1, 2,... CPUExecutionProvider 0 2497.0 6.0 NaN NaN
4 Conv [{'float': [1, 64, 112, 112]}] [{'float': [1, 3, 112, 112]}, {'float': [64, 3... CPUExecutionProvider 0 5364.0 6.0 4311.0 6.0
5 Conv [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}, {'float': [64, ... CPUExecutionProvider 0 101656.0 6.0 102240.0 6.0
6 Conv [{'float': [1, 64, 56, 56]}] [{'float': [1, 64, 112, 112]}, {'float': [64, ... CPUExecutionProvider 0 9524.0 6.0 1767.0 6.0
7 Conv [{'float': [1, 64, 56, 56]}] [{'float': [1, 64, 112, 112]}, {'float': [64, ... CPUExecutionProvider 0 NaN NaN 53992.0 6.0
8 Conv [{'float': [1, 64, 56, 56]}] [{'float': [1, 64, 112, 112]}, {'float': [64, ... CPUExecutionProvider 0 59088.0 6.0 NaN NaN
9 Conv [{'float': [1, 8, 112, 112]}] [{'float': [1, 2, 112, 112]}, {'float': [8, 2,... CPUExecutionProvider 0 NaN NaN 19992.0 6.0
10 Mul [{'float': [1, 64, 112, 112]}] [{'float': [1, 1, 112, 112]}, {'float': [1, 64... CPUExecutionProvider 0 2140.0 6.0 5791.0 6.0
11 PRelu [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}, {'float': [64, ... CPUExecutionProvider 0 12364.0 6.0 1828.0 6.0
12 PRelu [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}, {'float': [64, ... CPUExecutionProvider 1 2347.0 6.0 1783.0 6.0
13 ReduceMax [{'float': [1, 1, 112, 112]}] [{'float': [1, 64, 112, 112]}] CPUExecutionProvider 0 13900.0 6.0 23211.0 6.0
14 ReduceMean [{'float': [1, 1, 112, 112]}] [{'float': [1, 64, 112, 112]}] CPUExecutionProvider 0 20925.0 6.0 5553.0 6.0
15 ReorderInput [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}] CPUExecutionProvider 0 NaN NaN 6279.0 6.0
16 ReorderInput [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}] CPUExecutionProvider 1 NaN NaN 1533.0 6.0
17 ReorderInput [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}] CPUExecutionProvider 2 NaN NaN 1280.0 6.0
18 ReorderOutput [{'float': [1, 1, 112, 112]}] [{'float': [1, 8, 112, 112]}] CPUExecutionProvider 0 NaN NaN 146.0 6.0
19 ReorderOutput [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}] CPUExecutionProvider 0 NaN NaN 6803.0 6.0
20 ReorderOutput [{'float': [1, 64, 112, 112]}] [{'float': [1, 64, 112, 112]}] CPUExecutionProvider 1 NaN NaN 1323.0 6.0
21 ReorderOutput [{'float': [1, 64, 56, 56]}] [{'float': [1, 64, 56, 56]}] CPUExecutionProvider 0 NaN NaN 931.0 6.0
22 Sigmoid [{'float': [1, 1, 112, 112]}] [{'float': [1, 1, 112, 112]}] CPUExecutionProvider 0 310.0 6.0 NaN NaN


More detailed

gr.to_excel(f"plot_profiling_merged_details{suffix}.xlsx", index=False)
gr
durbase duropti countbase countopti
label
[+CPU]Conv(f-1x2x112x112,f-8x2x7x7)->f-1x8x112x112 0.0 19992.0 0.0 6.0
[+CPU]Conv(f-1x64x112x112,f-64x64x3x3,f-64,f-1x64x56x56)->f-1x64x56x56 0.0 53992.0 0.0 6.0
[+CPU]ReorderInput(f-1x64x112x112)->f-1x64x112x112 0.0 9092.0 0.0 18.0
[+CPU]ReorderOutput(f-1x64x112x112)->f-1x64x112x112 0.0 8126.0 0.0 12.0
[+CPU]ReorderOutput(f-1x64x56x56)->f-1x64x56x56 0.0 931.0 0.0 6.0
[+CPU]ReorderOutput(f-1x8x112x112)->f-1x1x112x112 0.0 146.0 0.0 6.0
[-CPU]Add(f-1x64x56x56,f-1x64x56x56)->f-1x64x56x56 2420.0 0.0 6.0 0.0
[-CPU]Conv(f-1x2x112x112,f-1x2x7x7)->f-1x1x112x112 2497.0 0.0 6.0 0.0
[-CPU]Conv(f-1x64x112x112,f-64x64x3x3,f-64)->f-1x64x56x56 59088.0 0.0 6.0 0.0
[-CPU]Sigmoid(f-1x1x112x112)->f-1x1x112x112 310.0 0.0 6.0 0.0
[=CPU]BatchNormalization(f-1x64x112x112,f-64,f-64,f-64,f-64)->f-1x64x112x112 2548.0 8064.0 6.0 6.0
[=CPU]Concat(f-1x1x112x112,f-1x1x112x112)->f-1x2x112x112 166.0 127.0 6.0 6.0
[=CPU]Conv(f-1x3x112x112,f-64x3x3x3,f-64)->f-1x64x112x112 5364.0 4311.0 6.0 6.0
[=CPU]Conv(f-1x64x112x112,f-64x64x1x1,f-64)->f-1x64x56x56 9524.0 1767.0 6.0 6.0
[=CPU]Conv(f-1x64x112x112,f-64x64x3x3,f-64)->f-1x64x112x112 101656.0 102240.0 6.0 6.0
[=CPU]Mul(f-1x1x112x112,f-1x64x112x112)->f-1x64x112x112 2140.0 5791.0 6.0 6.0
[=CPU]PRelu(f-1x64x112x112,f-64x1x1)->f-1x64x112x112 14711.0 3611.0 12.0 12.0
[=CPU]ReduceMax(f-1x64x112x112)->f-1x1x112x112 13900.0 23211.0 6.0 6.0
[=CPU]ReduceMean(f-1x64x112x112)->f-1x1x112x112 20925.0 5553.0 6.0 6.0


Final plot

# let's filter out unsignificant operator.
grmax = gr["durbase"] + gr["duropti"]
total = grmax.sum()
grmax /= total
gr = gr[grmax >= 0.01]


fig, ax = plt.subplots(1, 2, figsize=(14, min(gr.shape[0], 500)), sharey=True)
gr[["durbase", "duropti"]].plot.barh(ax=ax[0])
ax[0].set_title("Side by side duration")
gr = gr.copy()
gr[["countbase", "countopti"]].plot.barh(ax=ax[1])
ax[1].set_title("Side by side count")
fig.tight_layout()
fig.savefig(f"plot_profiling_side_by_side{suffix}.png")
Side by side duration, Side by side count

On CUDA

if "CUDAExecutionProvider" in get_available_providers():
    print("Profiling on CUDA")
    prof_base = ort_profile(
        filename,
        feeds,
        repeat=6,
        disable_optimization=True,
        providers=["CUDAExecutionProvider"],
    )
    prof_base.to_excel(f"prof_cuda_base{suffix}.xlsx", index=False)

    prof_opti = ort_profile(
        optimized,
        feeds,
        repeat=6,
        disable_optimization=True,
        providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
    )
    prof_opti.to_excel(f"prof_cuda_opti{suffix}.xlsx", index=False)

    unique_op = set(prof_base["args_op_name"])
    fig, ax = plt.subplots(2, 2, figsize=(10, len(unique_op)), sharex="col")
    plot_ort_profile(prof_base, ax[0, 0], ax[0, 1], title="baseline")
    plot_ort_profile(prof_opti, ax[1, 0], ax[1, 1], title="optimized")
    fig.tight_layout()
    fig.savefig(f"plot_profiling_cuda{suffix}.png")

    merge, gr = merge_ort_profile(prof_base, prof_opti)
    merge.to_excel(f"plot_profiling_merged{suffix}.xlsx", index=False)
    gr.to_excel(f"plot_profiling_merged_details{suffix}.xlsx", index=False)

    grmax = gr["durbase"] + gr["duropti"]
    total = grmax.sum()
    grmax /= total
    gr = gr[grmax >= 0.01]

    fig, ax = plt.subplots(1, 2, figsize=(14, min(gr.shape[0], 500)), sharey=True)
    gr[["durbase", "duropti"]].plot.barh(ax=ax[0])
    ax[0].set_title("Side by side duration")
    gr = gr.copy()
    gr[["countbase", "countopti"]].plot.barh(ax=ax[1])
    ax[1].set_title("Side by side count")
    fig.tight_layout()
    fig.savefig(f"plot_profiling_side_by_side_cuda{suffix}.png")

else:
    print(f"CUDA not available in {get_available_providers()}.")
    fig, ax = None, None

ax
  • baseline, n occurences, optimized, n occurences
  • Side by side duration, Side by side count
Profiling on CUDA
/home/xadupre/github/onnx-array-api/onnx_array_api/ort/ort_profile.py:260: FutureWarning: The provided callable <function sum at 0x7fc0d2399d80> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  .agg(
/home/xadupre/github/onnx-array-api/onnx_array_api/ort/ort_profile.py:260: FutureWarning: The provided callable <function sum at 0x7fc0d2399d80> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead.
  .agg(

array([<Axes: title={'center': 'Side by side duration'}, ylabel='label'>,
       <Axes: title={'center': 'Side by side count'}, ylabel='label'>],
      dtype=object)

Total running time of the script: (0 minutes 6.359 seconds)

Gallery generated by Sphinx-Gallery