Measuring onnxruntime performance against a cython binding

The following code measures the performance of the python bindings against a cython binding. The time spent in it is not significant when the computation is huge but it may be for small matrices.

import numpy
from pandas import DataFrame
import matplotlib.pyplot as plt
from tqdm import tqdm
from onnx import numpy_helper, TensorProto
from onnx.helper import (
    make_model,
    make_node,
    make_graph,
    make_tensor_value_info,
    make_opsetid,
)
from onnx.checker import check_model
from onnxruntime import InferenceSession
from onnx_extended.ortcy.wrap.ortinf import OrtSession
from onnx_extended.args import get_parsed_args
from onnx_extended.ext_test_case import measure_time, unit_test_going


script_args = get_parsed_args(
    "plot_bench_cypy_ort",
    description=__doc__,
    dims=(
        "1,10" if unit_test_going() else "1,10,100,1000",
        "square matrix dimensions to try, comma separated values",
    ),
    expose="repeat,number",
)

A simple onnx model

A = numpy_helper.from_array(numpy.array([1], dtype=numpy.float32), name="A")
X = make_tensor_value_info("X", TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info("Y", TensorProto.FLOAT, [None, None])
node1 = make_node("Add", ["X", "A"], ["Y"])
graph = make_graph([node1], "+1", [X], [Y], [A])
onnx_model = make_model(graph, opset_imports=[make_opsetid("", 18)], ir_version=8)
check_model(onnx_model)

Two python bindings on CPU

sess_ort = InferenceSession(
    onnx_model.SerializeToString(), providers=["CPUExecutionProvider"]
)
sess_ext = OrtSession(onnx_model.SerializeToString())

x = numpy.random.randn(10, 10).astype(numpy.float32)
y = x + 1

y_ort = sess_ort.run(None, {"X": x})[0]
y_ext = sess_ext.run([x])[0]

d_ort = numpy.abs(y_ort - y).sum()
d_ext = numpy.abs(y_ext - y).sum()
print(f"Discrepancies: d_ort={d_ort}, d_ext={d_ext}")
Discrepancies: d_ort=0.0, d_ext=0.0

Time measurement

run_1_1 is a specific implementation when there is only 1 input and output.

t_ort = measure_time(lambda: sess_ort.run(None, {"X": x})[0], number=200, repeat=100)
print(f"t_ort={t_ort}")

t_ext = measure_time(lambda: sess_ext.run([x])[0], number=200, repeat=100)
print(f"t_ext={t_ext}")

t_ext2 = measure_time(lambda: sess_ext.run_1_1(x), number=200, repeat=100)
print(f"t_ext2={t_ext2}")
t_ort={'average': np.float64(1.4214167399404685e-05), 'deviation': np.float64(9.921318194458582e-06), 'min_exec': np.float64(8.368075032194611e-06), 'max_exec': np.float64(5.840254500071751e-05), 'repeat': 100, 'number': 200, 'ttime': np.float64(0.0014214167399404685), 'context_size': 64, 'warmup_time': 0.00023353099822998047}
t_ext={'average': np.float64(1.053838609768718e-05), 'deviation': np.float64(4.029739849211689e-06), 'min_exec': np.float64(7.578765034850221e-06), 'max_exec': np.float64(2.532805498049129e-05), 'repeat': 100, 'number': 200, 'ttime': np.float64(0.001053838609768718), 'context_size': 64, 'warmup_time': 0.00024365499848499894}
t_ext2={'average': np.float64(5.640346098516602e-06), 'deviation': np.float64(1.730949932722855e-06), 'min_exec': np.float64(4.160329990554601e-06), 'max_exec': np.float64(1.6278900002362206e-05), 'repeat': 100, 'number': 200, 'ttime': np.float64(0.0005640346098516602), 'context_size': 64, 'warmup_time': 5.1965005695819855e-05}

Benchmark

dims = [int(i) for i in script_args.dims.split(",")]

data = []
for dim in tqdm(dims):
    if dim < 1000:
        number, repeat = script_args.number, script_args.repeat
    else:
        number, repeat = script_args.number * 5, script_args.repeat * 5
    x = numpy.random.randn(dim, dim).astype(numpy.float32)
    t_ort = measure_time(
        lambda x=x: sess_ort.run(None, {"X": x})[0], number=number, repeat=50
    )
    t_ort["name"] = "ort"
    t_ort["dim"] = dim
    data.append(t_ort)

    t_ext = measure_time(lambda x=x: sess_ext.run([x])[0], number=number, repeat=repeat)
    t_ext["name"] = "ext"
    t_ext["dim"] = dim
    data.append(t_ext)

    t_ext2 = measure_time(lambda x=x: sess_ext.run_1_1(x), number=number, repeat=repeat)
    t_ext2["name"] = "ext_1_1"
    t_ext2["dim"] = dim
    data.append(t_ext2)

    if unit_test_going() and dim >= 10:
        break


df = DataFrame(data)
df
  0%|          | 0/4 [00:00<?, ?it/s]
100%|██████████| 4/4 [00:02<00:00,  1.72it/s]
100%|██████████| 4/4 [00:02<00:00,  1.72it/s]
average deviation min_exec max_exec repeat number ttime context_size warmup_time name dim
0 0.000008 2.067263e-06 0.000006 0.000017 50 10 0.000421 64 0.000155 ort 1
1 0.000007 1.885701e-06 0.000005 0.000011 10 10 0.000067 64 0.000263 ext 1
2 0.000006 2.638214e-06 0.000005 0.000014 10 10 0.000058 64 0.000158 ext_1_1 1
3 0.000006 1.905289e-06 0.000005 0.000019 50 10 0.000300 64 0.000104 ort 10
4 0.000006 8.355474e-07 0.000005 0.000008 10 10 0.000056 64 0.000106 ext 10
5 0.000005 2.660827e-06 0.000004 0.000013 10 10 0.000054 64 0.000019 ext_1_1 10
6 0.000008 1.033075e-06 0.000007 0.000012 50 10 0.000385 64 0.000120 ort 100
7 0.000008 1.613468e-07 0.000008 0.000008 10 10 0.000081 64 0.000107 ext 100
8 0.000007 1.018958e-06 0.000007 0.000010 10 10 0.000075 64 0.000017 ext_1_1 100
9 0.000062 1.096915e-05 0.000046 0.000094 50 50 0.003118 64 0.000901 ort 1000
10 0.000491 2.403298e-04 0.000330 0.001513 50 50 0.024552 64 0.007834 ext 1000
11 0.000356 2.816248e-05 0.000312 0.000436 50 50 0.017788 64 0.000352 ext_1_1 1000


Plots

piv = df.pivot(index="dim", columns="name", values="average")

fig, ax = plt.subplots(1, 1)
piv.plot(ax=ax, title="Binding Comparison", logy=True, logx=True)
fig.tight_layout()
fig.savefig("plot_bench_ort.png")
Binding Comparison

Total running time of the script: (0 minutes 3.380 seconds)

Gallery generated by Sphinx-Gallery