helper¶
- onnx_extended.onnx2.helper.get_attribute_value(attr: AttributeProto) Any [source]¶
Returns the attribute value whatever the type is.
- onnx_extended.onnx2.helper.make_attribute(key: str, value: Any, doc_string: str | None = None, attr_type: int | None = None) AttributeProto [source]¶
Makes an AttributeProto based on the value type.
- onnx_extended.onnx2.helper.make_attribute_ref(name: str, attr_type: AttributeType, doc_string: str | None = None) AttributeProto [source]¶
Makes an AttributeProto holding a reference to the parent ” function’s attribute of given name and type.
- onnx_extended.onnx2.helper.make_empty_tensor_value_info(name: str) ValueInfoProto [source]¶
Creates an empty tensor value info.
- onnx_extended.onnx2.helper.make_function(domain: str, fname: str, inputs: Sequence[str], outputs: Sequence[str], nodes: Sequence[NodeProto], opset_imports: Sequence[OperatorSetIdProto], attributes: Sequence[str] | None = None, attribute_protos: Sequence[AttributeProto] | None = None, doc_string: str | None = None, overload: str | None = None, value_info: Sequence[ValueInfoProto] | None = None) FunctionProto [source]¶
Constructs a FunctionProto.
- Parameters:
domain – domain name
fname – function name
inputs – input names
outputs – output names
nodes – sequence of NodeProto
opset_imports – required domains (opset_import)
attributes – attribute names
attribute_protos – typed attributes
doc_string – documentation
overload – overload
value_info – information about type and shape for results
- Returns:
a FunctionProto
- onnx_extended.onnx2.helper.make_graph(nodes: Sequence[NodeProto], name: str, inputs: Sequence[ValueInfoProto], outputs: Sequence[ValueInfoProto], initializer: Sequence[TensorProto] | None = None, doc_string: str | None = None, value_info: Sequence[ValueInfoProto] | None = None, sparse_initializer: Sequence[SparseTensorProto] | None = None) GraphProto [source]¶
Constructs a GraphProto
- Args:
nodes: list of NodeProto name (string): graph name inputs: list of ValueInfoProto outputs: list of ValueInfoProto initializer: list of TensorProto doc_string (string): graph documentation value_info: list of ValueInfoProto sparse_initializer: list of SparseTensorProto
- Returns:
GraphProto
- onnx_extended.onnx2.helper.make_map_type_proto(key_type: int, value_type: TypeProto) TypeProto [source]¶
Makes a map TypeProto.
- onnx_extended.onnx2.helper.make_model(graph: GraphProto, ir_version: int = 11, opset_imports: Sequence[OperatorSetIdProto] | None = None, functions: Sequence[FunctionProto] | None = None, metadata_props: Sequence[StringStringEntryProto] | None = None, doc_string: str | None = None, producer_name: str | None = None, producer_version: str | None = None) ModelProto [source]¶
Constructs a ModelProto
- Parameters:
graph – GraphProto
ir_version – ir version, use the default one if missing
opset_imports – required domains, use the default one if missing
functions – list of functions
metadata_props – additional information
producer_name – producer name
producer_version – producer version
doc_string – documentation
- Returns:
model
- onnx_extended.onnx2.helper.make_node(op_type: str, inputs: Sequence[str], outputs: Sequence[str], name: str | None = None, doc_string: str | None = None, domain: str | None = None, overload: str | None = None, **kwargs: Any) NodeProto [source]¶
Constructs a NodeProto.
- Parameters:
op_type – (string): The name of the operator to construct
inputs – (list of string): list of input names
outputs – (list of string): list of output names
name – (string, default None): optional unique identifier for NodeProto
doc_string – (string, default None): optional documentation string for NodeProto
domain – (string, default None): optional domain for NodeProto. If it’s None, we will just use default domain (which is empty)
overload – (string, default None): optional field, used to resolve calls to model-local functions
kwargs – (dict): the attributes of the node. The acceptable values are documented in
make_attribute()
.
- Returns:
NodeProto
- onnx_extended.onnx2.helper.make_operatorsetid(domain: str, version: int) OperatorSetIdProto [source]¶
Construct an OperatorSetIdProto.
- Args:
domain (string): The domain of the operator set id version (integer): Version of operator set id
- Returns:
OperatorSetIdProto
- onnx_extended.onnx2.helper.make_opsetid(domain: str, version: int) OperatorSetIdProto [source]¶
Constructs an OperatorSetIdProto.
- Args:
domain (string): The domain of the operator set id version (integer): Version of operator set id
- Returns:
OperatorSetIdProto
- onnx_extended.onnx2.helper.make_optional_type_proto(inner_type_proto: TypeProto) TypeProto [source]¶
Makes an optional TypeProto.
- onnx_extended.onnx2.helper.make_sequence_type_proto(inner_type_proto: TypeProto) TypeProto [source]¶
Makes a sequence TypeProto.
- onnx_extended.onnx2.helper.make_sparse_tensor(values: TensorProto, indices: TensorProto, dims: Sequence[int]) SparseTensorProto [source]¶
Construct a SparseTensorProto
- Args:
values (TensorProto): the values indices (TensorProto): the indices dims: the shape
- Returns:
SparseTensorProto
- onnx_extended.onnx2.helper.make_sparse_tensor_type_proto(elem_type: int, shape: Sequence[str | int | None] | None, shape_denotation: list[str] | None = None) TypeProto [source]¶
Makes a SparseTensor TypeProto based on the data type and shape.
- onnx_extended.onnx2.helper.make_sparse_tensor_value_info(name: str, elem_type: int, shape: Sequence[str | int | None] | None, doc_string: str = '', shape_denotation: list[str] | None = None) ValueInfoProto [source]¶
Makes a SparseTensor ValueInfoProto based on the data type and shape.
- onnx_extended.onnx2.helper.make_tensor(name: str, data_type: int, dims: Sequence[int], vals: Sequence[int | float] | bytes | ndarray, raw: bool = False) TensorProto [source]¶
Makes a TensorProto with specified arguments. If raw is False, this function will choose the corresponding proto field to store the values based on data_type. If raw is True, use “raw_data” proto field to store the values, and values should be of type bytes in this case.
- Parameters:
name – tensor name
data_type – a value such as TensorProto.FLOAT
dims – shape
vals – values
raw – if True, vals contains the serialized content of the tensor, otherwise, vals should be a list of values of the type defined by
data_type
.
- Returns:
TensorProto
- onnx_extended.onnx2.helper.make_tensor_sequence_value_info(name: str, elem_type: int, shape: Sequence[str | int | None] | None, doc_string: str = '', elem_shape_denotation: list[str] | None = None) ValueInfoProto [source]¶
Makes a Sequence[Tensors] ValueInfoProto based on the data type and shape.
- onnx_extended.onnx2.helper.make_tensor_type_proto(elem_type: int, shape: Sequence[str | int | None] | None, shape_denotation: list[str] | None = None) TypeProto [source]¶
Makes a Tensor TypeProto based on the data type and shape.
- onnx_extended.onnx2.helper.make_tensor_value_info(name: str, elem_type: int, shape: Sequence[str | int | None] | None, doc_string: str = '', shape_denotation: list[str] | None = None) ValueInfoProto [source]¶
Makes a ValueInfoProto based on the data type and shape.
- onnx_extended.onnx2.helper.make_value_info(name: str, type_proto: TypeProto, doc_string: str = '') ValueInfoProto [source]¶
Makes a ValueInfoProto with the given type_proto.
- onnx_extended.onnx2.helper.set_metadata_props(proto: ModelProto | GraphProto | FunctionProto | NodeProto | TensorProto | ValueInfoProto, dict_value: dict[str, str]) None [source]¶
Sets metadata_props.
- onnx_extended.onnx2.helper.set_model_props(model: ModelProto, dict_value: dict[str, str]) None [source]¶
Sets metadata_props.