plotting#

Dot#

onnx_array_api.plotting.dot_plot.to_dot(proto: ModelProto, recursive: bool = False, prefix: str = '', use_onnx: bool = False, add_functions: bool = True, rt_shapes: Dict[str, Tuple[int, ...]] | None = None, **params) str[source]#

Produces a DOT language string for the graph.

Parameters:
  • params – additional params to draw the graph

  • recursive – also show subgraphs inside operator like Scan

  • prefix – prefix for every node name

  • use_onnx – use onnx dot format instead of this one

  • add_functions – add functions to the graph

  • rt_shapes – indicates shapes obtained from the execution or inference

Returns:

string

Default options for the graph are:

options = {
    'orientation': 'portrait',
    'ranksep': '0.25',
    'nodesep': '0.05',
    'width': '0.5',
    'height': '0.1',
    'size': '7',
}

One example:

<<<

import numpy as np  # B
from onnx_array_api.npx import absolute, jit_onnx
from onnx_array_api.plotting.dot_plot import to_dot


def l1_loss(x, y):
    return absolute(x - y).sum()


def l2_loss(x, y):
    return ((x - y) ** 2).sum()


def myloss(x, y):
    return l1_loss(x[:, 0], y[:, 0]) + l2_loss(x[:, 1], y[:, 1])


jitted_myloss = jit_onnx(myloss)

x = np.array([[0.1, 0.2], [0.3, 0.4]], dtype=np.float32)
y = np.array([[0.11, 0.22], [0.33, 0.44]], dtype=np.float32)
res = jitted_myloss(x, y)
print(res)

>>>

    0.042
digraph{
  size=7;
  ranksep=0.25;
  nodesep=0.05;
  orientation=portrait;

  x0 [shape=box color=red label="x0\nTensorProto.FLOAT\nshape=['', '']" fontsize=10];
  x1 [shape=box color=red label="x1\nTensorProto.FLOAT\nshape=['', '']" fontsize=10];

  r__32 [shape=box color=green label="r__32\nTensorProto.FLOAT" fontsize=10];


  cst__0 [shape=box label="cst__0" fontsize=10];
  Constant [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant -> cst__0;

  cst__1 [shape=box label="cst__1" fontsize=10];
  Constant1 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[2]" fontsize=10];
  Constant1 -> cst__1;

  cst__2 [shape=box label="cst__2" fontsize=10];
  Constant12 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant12 -> cst__2;

  cst__3 [shape=box label="cst__3" fontsize=10];
  Constant123 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant123 -> cst__3;

  cst__4 [shape=box label="cst__4" fontsize=10];
  Constant1234 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[2]" fontsize=10];
  Constant1234 -> cst__4;

  cst__5 [shape=box label="cst__5" fontsize=10];
  Constant12345 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant12345 -> cst__5;

  cst__6 [shape=box label="cst__6" fontsize=10];
  Constant123456 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[0]" fontsize=10];
  Constant123456 -> cst__6;

  cst__7 [shape=box label="cst__7" fontsize=10];
  Constant1234567 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant1234567 -> cst__7;

  cst__8 [shape=box label="cst__8" fontsize=10];
  Constant12345678 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant12345678 -> cst__8;

  cst__9 [shape=box label="cst__9" fontsize=10];
  Constant123456789 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[0]" fontsize=10];
  Constant123456789 -> cst__9;

  cst__10 [shape=box label="cst__10" fontsize=10];
  Constant12345678910 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant12345678910 -> cst__10;

  cst__11 [shape=box label="cst__11" fontsize=10];
  Constant1234567891011 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant1234567891011 -> cst__11;

  r__12 [shape=box label="r__12" fontsize=10];
  Slice [shape=box style="filled,rounded" color=orange label="Slice" fontsize=10];
  x0 -> Slice;
  cst__0 -> Slice;
  cst__1 -> Slice;
  cst__2 -> Slice;
  Slice -> r__12;

  cst__13 [shape=box label="cst__13" fontsize=10];
  Constant123456789101112 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant123456789101112 -> cst__13;

  r__14 [shape=box label="r__14" fontsize=10];
  Slice1 [shape=box style="filled,rounded" color=orange label="Slice" fontsize=10];
  x1 -> Slice1;
  cst__3 -> Slice1;
  cst__4 -> Slice1;
  cst__5 -> Slice1;
  Slice1 -> r__14;

  cst__15 [shape=box label="cst__15" fontsize=10];
  Constant12345678910111213 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant12345678910111213 -> cst__15;

  r__16 [shape=box label="r__16" fontsize=10];
  Slice12 [shape=box style="filled,rounded" color=orange label="Slice" fontsize=10];
  x0 -> Slice12;
  cst__6 -> Slice12;
  cst__7 -> Slice12;
  cst__8 -> Slice12;
  Slice12 -> r__16;

  cst__17 [shape=box label="cst__17" fontsize=10];
  Constant1234567891011121314 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant1234567891011121314 -> cst__17;

  r__18 [shape=box label="r__18" fontsize=10];
  Slice123 [shape=box style="filled,rounded" color=orange label="Slice" fontsize=10];
  x1 -> Slice123;
  cst__9 -> Slice123;
  cst__10 -> Slice123;
  cst__11 -> Slice123;
  Slice123 -> r__18;

  cst__19 [shape=box label="cst__19" fontsize=10];
  Constant123456789101112131415 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=[1]" fontsize=10];
  Constant123456789101112131415 -> cst__19;

  r__20 [shape=box label="r__20" fontsize=10];
  Squeeze [shape=box style="filled,rounded" color=orange label="Squeeze" fontsize=10];
  r__12 -> Squeeze;
  cst__13 -> Squeeze;
  Squeeze -> r__20;

  r__21 [shape=box label="r__21" fontsize=10];
  Squeeze1 [shape=box style="filled,rounded" color=orange label="Squeeze" fontsize=10];
  r__14 -> Squeeze1;
  cst__15 -> Squeeze1;
  Squeeze1 -> r__21;

  r__22 [shape=box label="r__22" fontsize=10];
  Squeeze12 [shape=box style="filled,rounded" color=orange label="Squeeze" fontsize=10];
  r__16 -> Squeeze12;
  cst__17 -> Squeeze12;
  Squeeze12 -> r__22;

  r__23 [shape=box label="r__23" fontsize=10];
  Squeeze123 [shape=box style="filled,rounded" color=orange label="Squeeze" fontsize=10];
  r__18 -> Squeeze123;
  cst__19 -> Squeeze123;
  Squeeze123 -> r__23;

  r__24 [shape=box label="r__24" fontsize=10];
  Sub [shape=box style="filled,rounded" color=orange label="Sub" fontsize=10];
  r__20 -> Sub;
  r__21 -> Sub;
  Sub -> r__24;

  r__25 [shape=box label="r__25" fontsize=10];
  Sub1 [shape=box style="filled,rounded" color=orange label="Sub" fontsize=10];
  r__22 -> Sub1;
  r__23 -> Sub1;
  Sub1 -> r__25;

  r__26 [shape=box label="r__26" fontsize=10];
  Constant12345678910111213141516 [shape=box style="filled,rounded" color=orange label="Constant\nvalue=2" fontsize=10];
  Constant12345678910111213141516 -> r__26;

  r__27 [shape=box label="r__27" fontsize=10];
  CastLike [shape=box style="filled,rounded" color=orange label="CastLike" fontsize=10];
  r__26 -> CastLike;
  r__24 -> CastLike;
  CastLike -> r__27;

  r__28 [shape=box label="r__28" fontsize=10];
  Abs [shape=box style="filled,rounded" color=orange label="Abs" fontsize=10];
  r__25 -> Abs;
  Abs -> r__28;

  r__29 [shape=box label="r__29" fontsize=10];
  Pow [shape=box style="filled,rounded" color=orange label="Pow" fontsize=10];
  r__24 -> Pow;
  r__27 -> Pow;
  Pow -> r__29;

  r__30 [shape=box label="r__30" fontsize=10];
  ReduceSum [shape=box style="filled,rounded" color=orange label="ReduceSum\nkeepdims=0" fontsize=10];
  r__28 -> ReduceSum;
  ReduceSum -> r__30;

  r__31 [shape=box label="r__31" fontsize=10];
  ReduceSum1 [shape=box style="filled,rounded" color=orange label="ReduceSum\nkeepdims=0" fontsize=10];
  r__29 -> ReduceSum1;
  ReduceSum1 -> r__31;

  Add [shape=box style="filled,rounded" color=orange label="Add" fontsize=10];
  r__30 -> Add;
  r__31 -> Add;
  Add -> r__32;
}

Statistics#

onnx_array_api.plotting.stat_plot.plot_ort_profile(df: DataFrame, ax0: Any | None = None, ax1: Any | None = None, title: str | None = None) Any[source]#

Plots time spend in computation based on dataframe produced by function ort_profile.

Parameters:
  • df – dataframe

  • ax0 – first axis to draw time

  • ax1 – second axis to draw occurences

  • title – graph title

Returns:

ax0

See Profiling for an example.

Text#

onnx_array_api.plotting.text_plot.onnx_text_plot_tree(node)[source]#

Gives a textual representation of a tree ensemble.

Parameters:

nodeTreeEnsemble*

Returns:

text

<<<

import numpy
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeRegressor
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_text_plot_tree

iris = load_iris()
X, y = iris.data.astype(numpy.float32), iris.target
clr = DecisionTreeRegressor(max_depth=3)
clr.fit(X, y)
onx = to_onnx(clr, X)
res = onnx_text_plot_tree(onx.graph.node[0])
print(res)

>>>

    n_targets=1
    n_trees=1
    ----
    treeid=0
    n X3 <= 0.8
       -n X3 <= 1.75
          -n X2 <= 4.85
             -f 0:2
             +f 0:1.67
          +n X2 <= 4.95
             -f 0:1.67
             +f 0:1.02
       +f 0:0
onnx_array_api.plotting.text_plot.onnx_text_plot_io(model, verbose=False, att_display=None)[source]#

Displays information about input and output types.

Parameters:
  • model – ONNX graph

  • verbose – display debugging information

Returns:

str

An ONNX graph is printed the following way:

<<<

import numpy
from sklearn.cluster import KMeans
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_text_plot_io

x = numpy.random.randn(10, 3)
y = numpy.random.randn(10)
model = KMeans(3)
model.fit(x, y)
onx = to_onnx(model, x.astype(numpy.float32), target_opset=15)
text = onnx_text_plot_io(onx, verbose=False)
print(text)

>>>

    opset: domain='' version=14
    input: name='X' type=dtype('float32') shape=['', 3]
    init: name='Ad_Addcst' type=dtype('float32') shape=(3,)
    init: name='Ge_Gemmcst' type=dtype('float32') shape=(3, 3)
    init: name='Mu_Mulcst' type=dtype('float32') shape=(1,)
    output: name='label' type=dtype('int64') shape=['']
    output: name='scores' type=dtype('float32') shape=['', 3]
onnx_array_api.plotting.text_plot.onnx_simple_text_plot(model, verbose=False, att_display=None, add_links=False, recursive=False, functions=True, raise_exc=True, sub_graphs_names=None, level=1, indent=True)[source]#

Displays an ONNX graph into text.

Parameters:
  • model – ONNX graph

  • verbose – display debugging information

  • att_display – list of attributes to display, if None, a default list if used

  • add_links – displays links of the right side

  • recursive – display subgraphs as well

  • functions – display functions as well

  • raise_exc – raises an exception if the model is not valid, otherwise tries to continue

  • sub_graphs_names – list of sub-graphs names

  • level – sub-graph level

  • indent – use indentation or not

Returns:

str

An ONNX graph is printed the following way:

<<<

import numpy
from sklearn.cluster import KMeans
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot

x = numpy.random.randn(10, 3)
y = numpy.random.randn(10)
model = KMeans(3)
model.fit(x, y)
onx = to_onnx(model, x.astype(numpy.float32), target_opset=15)
text = onnx_simple_text_plot(onx, verbose=False)
print(text)

>>>

    opset: domain='' version=14
    input: name='X' type=dtype('float32') shape=['', 3]
    init: name='Ad_Addcst' type=dtype('float32') shape=(3,) -- array([ 0.841, 15.533,  3.459], dtype=float32)
    init: name='Ge_Gemmcst' type=dtype('float32') shape=(3, 3)
    init: name='Mu_Mulcst' type=dtype('float32') shape=(1,) -- array([0.], dtype=float32)
    ReduceSumSquare(X, axes=[1], keepdims=1) -> Re_reduced0
      Mul(Re_reduced0, Mu_Mulcst) -> Mu_C0
        Gemm(X, Ge_Gemmcst, Mu_C0, alpha=-2.00, transB=1) -> Ge_Y0
      Add(Re_reduced0, Ge_Y0) -> Ad_C01
        Add(Ad_Addcst, Ad_C01) -> Ad_C0
          ArgMin(Ad_C0, axis=1, keepdims=0) -> label
          Sqrt(Ad_C0) -> scores
    output: name='label' type=dtype('int64') shape=['']
    output: name='scores' type=dtype('float32') shape=['', 3]

The same graphs with links.

<<<

import numpy
from sklearn.cluster import KMeans
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot

x = numpy.random.randn(10, 3)
y = numpy.random.randn(10)
model = KMeans(3)
model.fit(x, y)
onx = to_onnx(model, x.astype(numpy.float32), target_opset=15)
text = onnx_simple_text_plot(onx, verbose=False, add_links=True)
print(text)

>>>

    opset: domain='' version=14  
    input: name='X' type=dtype('float32') shape=['', 3]  ----------------------------------------------------+-+
    init: name='Ad_Addcst' type=dtype('float32') shape=(3,) -- array([5.087, 1.285, 0.645], dtype=float32)   |-|-----------+
    init: name='Ge_Gemmcst' type=dtype('float32') shape=(3, 3)  ------------------------------------+        | |           |
    init: name='Mu_Mulcst' type=dtype('float32') shape=(1,) -- array([0.], dtype=float32)  -----+   |        | |           |
    ReduceSumSquare(X, axes=[1], keepdims=1) -> Re_reduced0  <--+-------------------------------|-+-|--------+ |           |
      Mul(Re_reduced0, Mu_Mulcst) -> Mu_C0  <-------------------+-------------------------------+ | |          |           |
        Gemm(X, Ge_Gemmcst, Mu_C0, alpha=-2.00, transB=1) -> Ge_Y0  < ----------------------------|-+----------+           |
      Add(Re_reduced0, Ge_Y0) -> Ad_C01  <--------------------------------------------------------+                        |
        Add(Ad_Addcst, Ad_C01) -> Ad_C0  ----------------+-+---------------------------------------------------------------+
          ArgMin(Ad_C0, axis=1, keepdims=0) -> label  <--+-|--+
          Sqrt(Ad_C0) -> scores  <-------------------------+--|-----+
    output: name='label' type=dtype('int64') shape=['']  <----+     |
    output: name='scores' type=dtype('float32') shape=['', 3]  <----+

Visually, it looks like the following:

digraph{
  size=7;
  ranksep=0.25;
  orientation=portrait;
  nodesep=0.05;

  X [shape=box color=red label="X\nTensorProto.FLOAT\nshape=['', 3]" fontsize=10];

  label [shape=box color=green label="label\nTensorProto.INT64\nshape=['']" fontsize=10];
  scores [shape=box color=green label="scores\nTensorProto.FLOAT\nshape=['', 3]" fontsize=10];

  Ad_Addcst [shape=box label="Ad_Addcst\nfloat32((3,))\n[1.803 0.486 2.592]" fontsize=10];
  Ge_Gemmcst [shape=box label="Ge_Gemmcst\nfloat32((3, 3))\n[[ 0.912 -0.091 -0.981]\n [-0.689 -0.081  0.069]\n [..." fontsize=10];
  Mu_Mulcst [shape=box label="Mu_Mulcst\nfloat32((1,))\n[0.]" fontsize=10];

  Re_reduced0 [shape=box label="Re_reduced0" fontsize=10];
  Re_ReduceSumSquare [shape=box style="filled,rounded" color=orange label="ReduceSumSquare\naxes=[1]\nkeepdims=1" fontsize=10];
  X -> Re_ReduceSumSquare;
  Re_ReduceSumSquare -> Re_reduced0;

  Mu_C0 [shape=box label="Mu_C0" fontsize=10];
  Mu_Mul [shape=box style="filled,rounded" color=orange label="Mul" fontsize=10];
  Re_reduced0 -> Mu_Mul;
  Mu_Mulcst -> Mu_Mul;
  Mu_Mul -> Mu_C0;

  Ge_Y0 [shape=box label="Ge_Y0" fontsize=10];
  Ge_Gemm [shape=box style="filled,rounded" color=orange label="Gemm\nalpha=-2.0\ntransB=1" fontsize=10];
  X -> Ge_Gemm;
  Ge_Gemmcst -> Ge_Gemm;
  Mu_C0 -> Ge_Gemm;
  Ge_Gemm -> Ge_Y0;

  Ad_C01 [shape=box label="Ad_C01" fontsize=10];
  Ad_Add [shape=box style="filled,rounded" color=orange label="Add" fontsize=10];
  Re_reduced0 -> Ad_Add;
  Ge_Y0 -> Ad_Add;
  Ad_Add -> Ad_C01;

  Ad_C0 [shape=box label="Ad_C0" fontsize=10];
  Ad_Add1 [shape=box style="filled,rounded" color=orange label="Add" fontsize=10];
  Ad_Addcst -> Ad_Add1;
  Ad_C01 -> Ad_Add1;
  Ad_Add1 -> Ad_C0;

  Ar_ArgMin [shape=box style="filled,rounded" color=orange label="ArgMin\naxis=1\nkeepdims=0" fontsize=10];
  Ad_C0 -> Ar_ArgMin;
  Ar_ArgMin -> label;

  Sq_Sqrt [shape=box style="filled,rounded" color=orange label="Sqrt" fontsize=10];
  Ad_C0 -> Sq_Sqrt;
  Sq_Sqrt -> scores;
}