npx.npx_functions#
- onnx_array_api.npx.npx_functions.abs(*inputs, **kwargs)#
See
numpy.absolute()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.absolute(*inputs, **kwargs)#
See
numpy.absolute()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.arccos(*inputs, **kwargs)#
See
numpy.arccos()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.arccosh(*inputs, **kwargs)#
See
numpy.arccosh()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.amax(*inputs, **kwargs)#
See
numpy.amax()
.Signature:
( x: TensorType[numerics, 'T'], axis: OptParType[int], keepdims: OptParType[int], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.amin(*inputs, **kwargs)#
See
numpy.amin()
.Signature:
( x: TensorType[numerics, 'T'], axis: OptParType[int], keepdims: OptParType[int], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.arange(*inputs, **kwargs)#
See
numpy.arange()
.Signature:
( start_or_stop: TensorType[{'int16', 'int32', 'float64', 'int64', 'float32'}, (1,), 'I'], stop_or_step: OptTensorType[{'int16', 'int32', 'float64', 'int64', 'float32'}, (1,), 'I'], step: OptTensorType[{'int16', 'int32', 'float64', 'int64', 'float32'}, (1,), 'I'], dtype: OptParType[DType], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.argmax(*inputs, **kwargs)#
See
numpy.amax()
.Signature:
( x: TensorType[numerics, 'T'], axis: OptParType[int], keepdims: OptParType[int], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.argmin(*inputs, **kwargs)#
See
numpy.argmin()
.Signature:
( x: TensorType[numerics, 'T'], axis: OptParType[int], keepdims: OptParType[int], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.arcsin(*inputs, **kwargs)#
See
numpy.arcsin()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.arcsinh(*inputs, **kwargs)#
See
numpy.arcsinh()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.arctan(*inputs, **kwargs)#
See
numpy.arctan()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.arctanh(*inputs, **kwargs)#
See
numpy.arctanh()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.cdist(*inputs, **kwargs)#
See
scipy.special.distance.cdist()
.Signature:
( xa: TensorType[numerics, 'T'], xb: TensorType[numerics, 'T'], metric: OptParType[str], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.ceil(*inputs, **kwargs)#
See
numpy.ceil()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.clip(*inputs, **kwargs)#
See
numpy.clip()
.Signature:
( x: TensorType[numerics, 'T'], a_min: TensorType[numerics, 'T'], a_max: TensorType[numerics, 'T'], ):
- onnx_array_api.npx.npx_functions.compress(*inputs, **kwargs)#
See
numpy.compress()
. np.compress(condition, x) or npnx.compress(x, condition).Signature:
( condition: TensorType['bool_', 'B'], x: TensorType[numerics, 'T'], axis: OptParType[int], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.compute(*inputs, **kwargs)#
Executes an onnx proto.
- param x:
inputs
- param proto:
proto to execute
- param name:
model name
- return:
outputs
Signature:
( x: SequenceType["TensorType[numerics, 'T']"], proto: ParType[typing.Union[onnx.onnx_ml_pb2.FunctionProto, onnx.onnx_ml_pb2.ModelProto, onnx.onnx_ml_pb2.NodeProto]], name: ParType[str], ) -> TupleType[TensorType[numerics, 'T']]:
- onnx_array_api.npx.npx_functions.concat(*inputs, **kwargs)#
Operator concat, handle
numpy.vstack()
andnumpy.hstack()
.Signature:
( x: SequenceType["TensorType[numerics, 'T']"], axis: ParType[int], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.cos(*inputs, **kwargs)#
See
numpy.cos()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.cosh(*inputs, **kwargs)#
See
numpy.cosh()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.cumsum(*inputs, **kwargs)#
See
numpy.cumsum()
.Signature:
( x: TensorType[numerics, 'T'], axis: OptTensorType['int64', 'I'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.det(*inputs, **kwargs)#
See
numpy.linalg:det()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.dot(*inputs, **kwargs)#
See
numpy.dot()
dot is equivalent to npx.matmul == np.matmul != np.dot with arrays with more than 3D dimensions.Signature:
( a: TensorType[numerics, 'T'], b: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.einsum(*inputs, **kwargs)#
See
numpy.einsum()
.Signature:
( x: SequenceType["TensorType[numerics, 'T']"], equation: ParType[str], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.erf(*inputs, **kwargs)#
See
scipy.special.erf()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.exp(*inputs, **kwargs)#
See
numpy.exp()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.expand_dims(*inputs, **kwargs)#
See
numpy.expand_dims()
.Signature:
( x: TensorType[numerics, 'T'], axis: TensorType['int64', 'I'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.expit(*inputs, **kwargs)#
See
scipy.special.expit()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.floor(*inputs, **kwargs)#
See
numpy.floor()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.hstack(*inputs, **kwargs)#
See
numpy.hstack()
.Signature:
( x: SequenceType["TensorType[numerics, 'T']"], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.copy(*inputs, **kwargs)#
Makes a copy.
Signature:
( x: TensorType[allowed, 'T'], ) -> TensorType[allowed, 'T']:
- onnx_array_api.npx.npx_functions.identity(*inputs, **kwargs)#
Makes a copy.
Signature:
( n: ParType[int], dtype: OptParType[DType], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.isnan(*inputs, **kwargs)#
See
numpy.isnan()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType['bool_', 'T1']:
- onnx_array_api.npx.npx_functions.log(*inputs, **kwargs)#
See
numpy.log()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.log1p(*inputs, **kwargs)#
See
numpy.log1p()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.matmul(*inputs, **kwargs)#
See
numpy.matmul()
.Signature:
( a: TensorType[numerics, 'T'], b: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.pad(*inputs, **kwargs)#
It does not implement
numpy.pad()
but the ONNX version.Signature:
( x: TensorType[numerics, 'T'], pads: TensorType['int64', 'I'], constant_value: OptTensorType[numerics, 'T'], axes: OptTensorType['int64', 'I'], mode: ParType[str], ):
- onnx_array_api.npx.npx_functions.reciprocal(*inputs, **kwargs)#
See
numpy.reciprocal()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.relu(*inputs, **kwargs)#
Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.round(*inputs, **kwargs)#
See
numpy.round()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.sigmoid(*inputs, **kwargs)#
See
scipy.special.expit()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.sign(*inputs, **kwargs)#
See
numpy.sign()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.sin(*inputs, **kwargs)#
See
numpy.sin()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.sinh(*inputs, **kwargs)#
See
numpy.sinh()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.squeeze(*inputs, **kwargs)#
See
numpy.squeeze()
.Signature:
( x: TensorType[numerics, 'T'], axis: OptTensorType['int64', 'I'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.tan(*inputs, **kwargs)#
See
numpy.tan()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.tanh(*inputs, **kwargs)#
See
numpy.tanh()
.Signature:
( x: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.topk(*inputs, **kwargs)#
See
numpy.argsort()
.Signature:
( x: TensorType[numerics, 'T'], k: TensorType['int64', (1,), 'I'], axis: OptParType[int], largest: OptParType[int], sorted: OptParType[int], ) -> TupleType[TensorType[numerics, 'T'], TensorType['int64', 'I']]:
- onnx_array_api.npx.npx_functions.transpose(*inputs, **kwargs)#
See
numpy.transpose()
.Signature:
( x: TensorType[numerics, 'T'], perm: ParType[typing.Tuple[int, ...]], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.unsqueeze(*inputs, **kwargs)#
See
numpy.expand_dims()
.Signature:
( x: TensorType[numerics, 'T'], axis: TensorType['int64', 'I'], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.vstack(*inputs, **kwargs)#
See
numpy.vstack()
.Signature:
( x: SequenceType["TensorType[numerics, 'T']"], ) -> TensorType[numerics, 'T']:
- onnx_array_api.npx.npx_functions.where(*inputs, **kwargs)#
See
numpy.where()
.Signature:
( cond: TensorType['bool_', 'B'], x: TensorType[numerics, 'T'], y: TensorType[numerics, 'T'], ) -> TensorType[numerics, 'T']: