npx.npx_var#
Var#
- class onnx_array_api.npx.npx_var.Var(*inputs: List[Any], op: Callable | str | Tuple[str, str] | FunctionProto | ModelProto | NodeProto | None = None, dtype: type | DType | None = None, inline: bool = False, n_var_outputs: int = 1, input_indices: List[int] | None = None, **kwargs)[source]#
- Defines a variable, a result… - Parameters:
- inputs – list of inputs 
- op – apply on operator on the inputs 
- inline – True to reduce the use of function and inline small functions, this only applies if op is a function 
- n_var_outputs – number of the operator outputs 
- input_indices – to select a specific output from the input operator 
- kwargs – operator attributes 
 
 - Private attribute: - Parameters:
- onnx_input_type – names given to the variables 
 - property annotation#
- Returns a type if known for the Var itself. 
 - flatten() Var[source]#
- Flattens a matrix (see - numpy.ndarray.flatten()).- Parameters:
- axis – only flatten from axis to the end. 
- Returns:
 
 - get(index: int) Var[source]#
- If an operator or a function returns more than one output, this takes only one. - Parameters:
- index – index of the output to select 
- Returns:
- Var 
 
 - property is_function#
- Tells if this variable encapsulate a function. 
 - max(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var[source]#
- See - numpy.max().
 - mean(axis: OptParTypeTupleType_int | None = None, keepdims: ParTypeint = 0) Var[source]#
- See - numpy.mean().
 - min(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var[source]#
- See - numpy.min().
 - prod(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var[source]#
- See - numpy.prod().
 - reduce_function(reduce_op, axis: OptTensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var[source]#
- See - numpy.sum()or any other reduce function.
 - replace_inputs(new_inputs: List[Var], input_indices: List[int] | None = None) Var[source]#
- Replaces inputs by new ones. It creates a copy. It is needed when inlining functions. 
 - property self_var#
- Returns itself or the variable corresponding to its state after a call to __setitem__. 
 - set_onnx_name(prefix: str)[source]#
- Forces this variable to get this name during - Parameters:
- prefix – prefix 
 
 - sum(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var[source]#
- See - numpy.sum().
 - to_onnx(target_opsets: Dict[str, int] | None = None, as_function: bool = False, name: str | None = None, domain: str | None = None, attributes: List[str] | None = None, constraints: Dict[Any, TensorType] | None = None, ir_version: int | None = None) ModelProto | FunctionProto | List[Any][source]#
- Converts the recursive graph to ONNX. - Parameters:
- target_opsets – dictionary {opset: version} 
- as_function – conversion to - onnx.FunctionProtoor- onnx.ModelProto
- name – function name if as_function is True 
- domain – function domain if as_function is True 
- attributes – function attributes if any 
- constraints – specifies a precise type for the type constraints when a function allows more than one type, this works if there is only one variable to be converted 
 
- Returns:
- ModelProto, FunctionProto 
 
 
Cst, Input#
ManyIdentity#
- class onnx_array_api.npx.npx_var.ManyIdentity(*inputs, input_indices=None)[source]#
- Holds several instances of - Var.- to_onnx(target_opsets: Dict[str, int] | None = None, as_function: bool = False, name: str | None = None, domain: str | None = None, attributes: List[str] | None = None, constraints: Dict[Any, TensorType] | None = None, ir_version: int | None = None) ModelProto | FunctionProto | List[Any][source]#
- Converts the recursive graph to ONNX. - Parameters:
- target_opsets – dictionary {opset: version}, if None, it is replaced by DEFAULT_OPSETS 
- as_function – conversion to - onnx.FunctionProtoor- onnx.ModelProto
- name – function name if as_function is True 
- domain – function domain if as_function is True 
- attributes – function attributes if any 
- constraints – specifies a precise type for the type constraints when a function allows more than one type, this works if there is only one variable to be converted 
 
- Returns:
- ModelProto, FunctionProto 
 
 
Par#
- class onnx_array_api.npx.npx_var.Par(name: str, dtype: ParType, value: Any | None = None, parent_op: Tuple[str, str, int] | None = None)[source]#
- Defines a named parameter. - Parameters:
- name – parameter name 
- dtype – parameter type (bool, int, str, float) 
- value – value of the parameter if known 
- parent_op – node type it belongs to 
 
 - property onnx_type#
- Returns the corresponding onnx type.