import pprint
from collections import OrderedDict
import numpy
from onnx import AttributeProto
from ..reference import to_array_extended as to_array
from ._helper import _get_shape, _get_type, attributes_as_dict
def _rule(r):
if r == "BRANCH_LEQ":
return "<="
if r == "BRANCH_LT":
return "<"
if r == "BRANCH_GEQ":
return ">="
if r == "BRANCH_GT":
return ">"
if r == "BRANCH_EQ":
return "=="
if r == "BRANCH_NEQ":
return "!="
raise ValueError(f"Unexpected rule {r!r}.")
def _number2str(i):
if isinstance(i, int):
return str(i)
if int(i) == i:
return str(int(i))
return f"{i:1.2f}"
[docs]def onnx_text_plot_tree(node):
"""
Gives a textual representation of a tree ensemble.
:param node: `TreeEnsemble*`
:return: text
.. runpython::
:showcode:
:warningout: DeprecationWarning, FutureWarning
import numpy
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeRegressor
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_text_plot_tree
iris = load_iris()
X, y = iris.data.astype(numpy.float32), iris.target
clr = DecisionTreeRegressor(max_depth=3)
clr.fit(X, y)
onx = to_onnx(clr, X)
res = onnx_text_plot_tree(onx.graph.node[0])
print(res)
"""
class Node:
"Node representation."
def __init__(self, i, atts):
self.nodes_hitrates = None
self.nodes_missing_value_tracks_true = None
for k, v in atts.items():
if k.startswith("nodes"):
setattr(self, k, v[i])
self.depth = 0
self.true_false = ""
self.targets = []
def append_target(self, tid, weight):
self.targets.append(dict(target_id=tid, weight=weight))
def process_node(self):
"node to string"
if self.nodes_modes == "LEAF":
if not self.targets:
text = f"{self.true_false}f"
elif len(self.targets) == 1:
t = self.targets[0]
text = (
f"{self.true_false}f "
f"{t['target_id']}:{_number2str(t['weight'])}"
)
else:
ts = " ".join(
map(
lambda t: f"{t['target_id']}:{_number2str(t['weight'])}",
self.targets,
)
)
text = f"{self.true_false}f {ts}"
else:
text = "%sn X%d %s %r" % (
self.true_false,
self.nodes_featureids,
_rule(self.nodes_modes),
self.nodes_values,
)
if self.nodes_hitrates and self.nodes_hitrates != 1:
text += f" hi={self.nodes_hitrates!r}"
if self.nodes_missing_value_tracks_true:
text += f" miss={self.nodes_missing_value_tracks_true!r}"
return f"{' ' * self.depth}{text}"
def process_tree(atts, treeid):
"tree to string"
rows = [f"treeid={treeid!r}"]
if "base_values" in atts:
if treeid < len(atts["base_values"]):
rows.append(f"base_value={atts['base_values'][treeid]!r}")
short = {}
for prefix in ["nodes", "target", "class"]:
if (f"{prefix}_treeids") not in atts:
continue
idx = [
i
for i in range(len(atts[f"{prefix}_treeids"]))
if atts[f"{prefix}_treeids"][i] == treeid
]
for k, v in atts.items():
if k.startswith(prefix):
if "classlabels" in k:
short[k] = list(v)
else:
short[k] = [v[i] for i in idx]
nodes = OrderedDict()
for i in range(len(short["nodes_treeids"])):
nodes[i] = Node(i, short)
prefix = "target" if "target_treeids" in short else "class"
for i in range(len(short[f"{prefix}_treeids"])):
idn = short[f"{prefix}_nodeids"][i]
node = nodes[idn]
node.append_target(
tid=short[f"{prefix}_ids"][i], weight=short[f"{prefix}_weights"][i]
)
def iterate(nodes, node, depth=0, true_false=""):
node.depth = depth
node.true_false = true_false
yield node
if node.nodes_falsenodeids > 0:
for n in iterate(
nodes,
nodes[node.nodes_falsenodeids],
depth=depth + 1,
true_false="-",
):
yield n
for n in iterate(
nodes,
nodes[node.nodes_truenodeids],
depth=depth + 1,
true_false="+",
):
yield n
for node in iterate(nodes, nodes[0]):
rows.append(node.process_node())
return rows
if node.op_type in ("TreeEnsembleRegressor", "TreeEnsembleClassifier"):
d = attributes_as_dict(node)
atts = {}
for k, v in d.items():
atts[k] = v if isinstance(v, int) else list(v)
trees = list(sorted(set(atts["nodes_treeids"])))
if "n_targets" in atts:
rows = [f"n_targets={atts['n_targets']!r}"]
else:
rows = [
"n_classes=%r"
% len(
atts.get("classlabels_int64s", atts.get("classlabels_strings", []))
)
]
rows.append(f"n_trees={len(trees)!r}")
for tree in trees:
r = process_tree(atts, tree)
rows.append("----")
rows.extend(r)
return "\n".join(rows)
raise NotImplementedError( # pragma: no cover
f"Type {node.op_type!r} cannot be displayed."
)
def _append_succ_pred(
subgraphs,
successors,
predecessors,
node_map,
node,
prefix="",
parent_node_name=None,
):
node_name = prefix + node.name + "#" + "|".join(node.output)
node_map[node_name] = node
successors[node_name] = []
predecessors[node_name] = []
for name in node.input:
predecessors[node_name].append(name)
if name not in successors:
successors[name] = []
successors[name].append(node_name)
for name in node.output:
successors[node_name].append(name)
predecessors[name] = [node_name]
if node.op_type in {"If", "Scan", "Loop", "Expression"}:
for att in node.attribute:
if (
att.type != AttributeProto.GRAPH
or not hasattr(att, "g")
or att.g is None
):
continue
subgraphs.append((node, att.name, att.g))
_append_succ_pred_s(
subgraphs,
successors,
predecessors,
node_map,
att.g.node,
prefix=node_name + ":/:",
parent_node_name=node_name,
parent_graph=att.g,
)
def _append_succ_pred_s(
subgraphs,
successors,
predecessors,
node_map,
nodes,
prefix="",
parent_node_name=None,
parent_graph=None,
):
for node in nodes:
_append_succ_pred(
subgraphs,
successors,
predecessors,
node_map,
node,
prefix=prefix,
parent_node_name=parent_node_name,
)
if parent_node_name is not None:
unknown = set()
known = {}
for i in parent_graph.initializer:
known[i.name] = None
for i in parent_graph.input:
known[i.name] = None
for n in parent_graph.node:
for i in n.input:
if i not in known:
unknown.add(i)
for i in n.output:
known[i] = n
if unknown:
# These inputs are coming from the graph below.
for name in unknown:
successors[name].append(parent_node_name)
predecessors[parent_node_name].append(name)
def graph_predecessors_and_successors(graph):
"""
Returns the successors and the predecessors within on ONNX graph.
"""
node_map = {}
successors = {}
predecessors = {}
subgraphs = []
_append_succ_pred_s(subgraphs, successors, predecessors, node_map, graph.node)
return subgraphs, predecessors, successors, node_map
def get_hidden_inputs(nodes):
"""
Returns the list of hidden inputs used by subgraphs.
:param nodes: list of nodes
:return: list of names
"""
inputs = set()
outputs = set()
for node in nodes:
inputs |= set(node.input)
outputs |= set(node.output)
for att in node.attribute:
if (
att.type != AttributeProto.GRAPH
or not hasattr(att, "g")
or att.g is None
):
continue
hidden = get_hidden_inputs(att.g.node)
inits = set(i.name for i in att.g.initializer)
inits |= set(i.name for i in att.g.sparse_initializer)
inputs |= hidden - (inits & hidden)
return inputs - (outputs & inputs)
def reorder_nodes_for_display(nodes, verbose=False):
"""
Reorders the node with breadth first seach (BFS).
:param nodes: list of ONNX nodes
:param verbose: dislay intermediate informations
:return: reordered list of nodes
"""
class temp:
"Fake GraphProto."
def __init__(self, nodes):
self.node = nodes
_, predecessors, successors, dnodes = graph_predecessors_and_successors(temp(nodes))
local_variables = get_hidden_inputs(nodes)
all_outputs = set()
all_inputs = set(local_variables)
for node in nodes:
all_outputs |= set(node.output)
all_inputs |= set(node.input)
common = all_outputs & all_inputs
successors = {k: set(v) for k, v in successors.items()}
predecessors = {k: set(v) for k, v in predecessors.items()}
if verbose:
pprint.pprint(
[
"[reorder_nodes_for_display]",
"predecessors",
predecessors,
"successors",
successors,
]
)
known = all_inputs - common
new_nodes = []
done = set()
def _find_sequence(node_name, known, done):
inputs = dnodes[node_name].input
if any(map(lambda i: i not in known, inputs)):
return []
res = [node_name]
while res[-1] in successors:
next_names = successors[res[-1]]
if res[-1] not in dnodes:
next_names = set(v for v in next_names if v not in known)
if len(next_names) == 1:
next_name = next_names.pop()
inputs = dnodes[next_name].input
if any(map(lambda i: i not in known, inputs)):
break
res.extend(next_name)
else:
break
else:
next_names = set(v for v in next_names if v not in done)
if len(next_names) == 1:
next_name = next_names.pop()
res.append(next_name)
else:
break
return [r for r in res if r in dnodes and r not in done]
while len(done) < len(nodes):
# possible
possibles = OrderedDict()
for k, v in dnodes.items():
if k in done:
continue
if ":/:" in k:
# node part of a sub graph (assuming :/: is never used in a node name)
continue
if predecessors[k] <= known:
possibles[k] = v
sequences = OrderedDict()
for k, v in possibles.items():
if k in done:
continue
sequences[k] = _find_sequence(k, known, done)
if verbose:
print(
"[reorder_nodes_for_display] * sequence(%s)=%s - %r"
% (k, ",".join(sequences[k]), list(sequences))
)
if not sequences:
raise RuntimeError( # pragma: no cover
"Unexpected empty sequence (len(possibles)=%d, "
"len(done)=%d, len(nodes)=%d). This is usually due to "
"a name used both as result name and node node. "
"known=%r." % (len(possibles), len(done), len(nodes), known)
)
# find the best sequence
best = None
for k, v in sequences.items():
if best is None or len(v) > len(sequences[best]):
# if the sequence of successors is longer
best = k
elif len(v) == len(sequences[best]):
if new_nodes:
# then choose the next successor sharing input with
# previous output
so = set(new_nodes[-1].output)
first1 = dnodes[sequences[best][0]]
first2 = dnodes[v[0]]
if len(set(first1.input) & so) < len(set(first2.input) & so):
best = k
else:
first1 = dnodes[sequences[best][0]]
first2 = dnodes[v[0]]
if first1.op_type > first2.op_type:
best = k
elif first1.op_type == first2.op_type and first1.name > first2.name:
best = k
if best is None:
raise RuntimeError( # pragma: no cover
f"Wrong implementation (len(sequence)={len(sequences)})."
)
if verbose:
print(
"[reorder_nodes_for_display] BEST: sequence(%s)=%s"
% (best, ",".join(sequences[best]))
)
# process the sequence
for k in sequences[best]:
v = dnodes[k]
new_nodes.append(v)
if verbose:
print(f"[reorder_nodes_for_display] + {v.name!r} ({v.op_type!r})")
done.add(k)
known |= set(v.output)
if len(new_nodes) != len(nodes):
raise RuntimeError( # pragma: no cover
"The returned new nodes are different. "
"len(nodes=%d) != %d=len(new_nodes). done=\n%r"
"\n%s\n----------\n%s"
% (
len(nodes),
len(new_nodes),
done,
"\n".join(
"%d - %s - %s - %s"
% (
(n.name + "".join(n.output)) in done,
n.op_type,
n.name,
n.name + "".join(n.output),
)
for n in nodes
),
"\n".join(
"%d - %s - %s - %s"
% (
(n.name + "".join(n.output)) in done,
n.op_type,
n.name,
n.name + "".join(n.output),
)
for n in new_nodes
),
)
)
n0s = set(n.name for n in nodes)
n1s = set(n.name for n in new_nodes)
if n0s != n1s:
raise RuntimeError( # pragma: no cover
"The returned new nodes are different.\n"
"%r !=\n%r\ndone=\n%r"
"\n----------\n%s\n----------\n%s"
% (
n0s,
n1s,
done,
"\n".join(
"%d - %s - %s - %s"
% (
(n.name + "".join(n.output)) in done,
n.op_type,
n.name,
n.name + "".join(n.output),
)
for n in nodes
),
"\n".join(
"%d - %s - %s - %s"
% (
(n.name + "".join(n.output)) in done,
n.op_type,
n.name,
n.name + "".join(n.output),
)
for n in new_nodes
),
)
)
return new_nodes
[docs]def onnx_simple_text_plot(
model,
verbose=False,
att_display=None,
add_links=False,
recursive=False,
functions=True,
raise_exc=True,
sub_graphs_names=None,
level=1,
indent=True,
):
"""
Displays an ONNX graph into text.
:param model: ONNX graph
:param verbose: display debugging information
:param att_display: list of attributes to display, if None,
a default list if used
:param add_links: displays links of the right side
:param recursive: display subgraphs as well
:param functions: display functions as well
:param raise_exc: raises an exception if the model is not valid,
otherwise tries to continue
:param sub_graphs_names: list of sub-graphs names
:param level: sub-graph level
:param indent: use indentation or not
:return: str
An ONNX graph is printed the following way:
.. runpython::
:showcode:
:warningout: DeprecationWarning, FutureWarning
import numpy
from sklearn.cluster import KMeans
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot
x = numpy.random.randn(10, 3)
y = numpy.random.randn(10)
model = KMeans(3)
model.fit(x, y)
onx = to_onnx(model, x.astype(numpy.float32),
target_opset=15)
text = onnx_simple_text_plot(onx, verbose=False)
print(text)
The same graphs with links.
.. runpython::
:showcode:
:warningout: DeprecationWarning, FutureWarning
import numpy
from sklearn.cluster import KMeans
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_simple_text_plot
x = numpy.random.randn(10, 3)
y = numpy.random.randn(10)
model = KMeans(3)
model.fit(x, y)
onx = to_onnx(model, x.astype(numpy.float32),
target_opset=15)
text = onnx_simple_text_plot(onx, verbose=False, add_links=True)
print(text)
Visually, it looks like the following:
.. gdot::
:script: DOT-SECTION
# onnx_simple_text_plot
import numpy
from sklearn.cluster import KMeans
from skl2onnx import to_onnx
from onnx_array_api.plotting.dot_plot import to_dot
x = numpy.random.randn(10, 3)
y = numpy.random.randn(10)
model = KMeans(3)
model.fit(x, y)
model_onnx = to_onnx(model, x.astype(numpy.float32),
target_opset=15)
print("DOT-SECTION", to_dot(model_onnx))
"""
use_indentation = indent
if att_display is None:
att_display = [
"activations",
"align_corners",
"allowzero",
"alpha",
"auto_pad",
"axis",
"axes",
"batch_axis",
"batch_dims",
"beta",
"bias",
"blocksize",
"case_change_action",
"ceil_mode",
"center_point_box",
"clip",
"coordinate_transformation_mode",
"count_include_pad",
"cubic_coeff_a",
"decay_factor",
"detect_negative",
"detect_positive",
"dilation",
"dilations",
"direction",
"dtype",
"end",
"epsilon",
"equation",
"exclusive",
"exclude_outside",
"extrapolation_value",
"fmod",
"gamma",
"group",
"hidden_size",
"high",
"ignore_index",
"input_forget",
"is_case_sensitive",
"k",
"keepdims",
"kernel_shape",
"lambd",
"largest",
"layout",
"linear_before_reset",
"locale",
"low",
"max_gram_length",
"max_skip_count",
"mean",
"min_gram_length",
"mode",
"momentum",
"nearest_mode",
"ngram_counts",
"ngram_indexes",
"noop_with_empty_axes",
"norm_coefficient",
"norm_coefficient_post",
"num_scan_inputs",
"output_height",
"output_padding",
"output_shape",
"output_width",
"p",
"padding_mode",
"pads",
"perm",
"pooled_shape",
"reduction",
"reverse",
"sample_size",
"sampling_ratio",
"scale",
"scan_input_axes",
"scan_input_directions",
"scan_output_axes",
"scan_output_directions",
"seed",
"select_last_index",
"size",
"sorted",
"spatial_scale",
"start",
"storage_order",
"strides",
"time_axis",
"to",
"training_mode",
"transA",
"transB",
"type",
"upper",
"xs",
"y",
"zs",
]
if sub_graphs_names is None:
sub_graphs_names = {}
def _get_subgraph_name(idg):
if idg in sub_graphs_names:
return sub_graphs_names[idg]
g = "G%d" % (len(sub_graphs_names) + 1)
sub_graphs_names[idg] = g
return g
def str_node(indent, node):
atts = []
if hasattr(node, "attribute"):
for att in node.attribute:
done = True
if hasattr(att, "ref_attr_name") and att.ref_attr_name:
atts.append(f"{att.name}=${att.ref_attr_name}")
continue
if att.name in att_display:
if att.type == AttributeProto.INT:
atts.append("%s=%d" % (att.name, att.i))
elif att.type == AttributeProto.FLOAT:
atts.append(f"{att.name}={att.f:1.2f}")
elif att.type == AttributeProto.INTS:
atts.append(
"%s=%s" % (att.name, str(list(att.ints)).replace(" ", ""))
)
else:
done = False
elif (
att.type == AttributeProto.GRAPH
and hasattr(att, "g")
and att.g is not None
):
atts.append(f"{att.name}={_get_subgraph_name(id(att.g))}")
else:
done = False
if done:
continue
if att.type in (
AttributeProto.TENSOR,
AttributeProto.TENSORS,
AttributeProto.SPARSE_TENSOR,
AttributeProto.SPARSE_TENSORS,
):
try:
val = str(to_array(att.t).tolist())
except TypeError as e:
raise TypeError( # pragma: no cover
"Unable to display tensor type %r.\n%s"
% (att.type, str(att))
) from e
if "\n" in val:
val = val.split("\n", maxsplit=1) + "..."
if len(val) > 10:
val = val[:10] + "..."
elif att.type == AttributeProto.STRING:
val = str(att.s)
if len(val) > 50:
val = val[:40] + "..." + val[-10:]
elif att.type == AttributeProto.STRINGS:
n_val = list(att.strings)
if len(n_val) < 5:
val = ",".join(map(str, n_val))
else:
val = "%d:[%s...%s]" % (
len(n_val),
",".join(map(str, n_val[:2])),
",".join(map(str, n_val[-2:])),
)
elif att.type == AttributeProto.INT:
val = str(att.i)
elif att.type == AttributeProto.FLOAT:
val = str(att.f)
elif att.type == AttributeProto.INTS:
n_val = list(att.ints)
if len(n_val) < 6:
val = f"[{','.join(map(str, n_val))}]"
else:
val = "%d:[%s...%s]" % (
len(n_val),
",".join(map(str, n_val[:3])),
",".join(map(str, n_val[-3:])),
)
elif att.type == AttributeProto.FLOATS:
n_val = list(att.floats)
if len(n_val) < 5:
val = f"[{','.join(map(str, n_val))}]"
else:
val = "%d:[%s...%s]" % (
len(n_val),
",".join(map(str, n_val[:2])),
",".join(map(str, n_val[-2:])),
)
else:
val = ".%d" % att.type
atts.append(f"{att.name}={val}")
inputs = list(node.input)
if atts:
inputs.extend(atts)
if node.domain in ("", "ai.onnx.ml"):
domain = ""
else:
domain = f"[{node.domain}]"
return "%s%s%s(%s) -> %s" % (
" " * indent,
node.op_type,
domain,
", ".join(inputs),
", ".join(node.output),
)
rows = []
if hasattr(model, "opset_import"):
for opset in model.opset_import:
rows.append(f"opset: domain={opset.domain!r} version={opset.version!r}")
if hasattr(model, "graph"):
if model.doc_string:
rows.append(f"doc_string: {model.doc_string}")
main_model = model
model = model.graph
else:
main_model = None
# inputs
line_name_new = {}
line_name_in = {}
if level == 0:
rows.append("----- input ----")
for inp in model.input:
if isinstance(inp, str):
rows.append(f"input: {inp!r}")
else:
line_name_new[inp.name] = len(rows)
rows.append(
"input: name=%r type=%r shape=%r"
% (inp.name, _get_type(inp), _get_shape(inp))
)
if hasattr(model, "attribute"):
for att in model.attribute:
if isinstance(att, str):
rows.append(f"attribute: {att!r}")
else:
raise NotImplementedError( # pragma: no cover
"Not yet introduced in onnx."
)
# initializer
if hasattr(model, "initializer"):
if len(model.initializer) and level == 0:
rows.append("----- initializer ----")
for init in model.initializer:
if numpy.prod(_get_shape(init)) < 5:
content = f" -- {to_array(init).ravel()!r}"
else:
content = ""
line_name_new[init.name] = len(rows)
rows.append(
"init: name=%r type=%r shape=%r%s"
% (init.name, _get_type(init), _get_shape(init), content)
)
if level == 0:
rows.append("----- main graph ----")
# successors, predecessors, it needs to support subgraphs
subgraphs = graph_predecessors_and_successors(model)[0]
# walk through nodes
init_names = set()
indents = {}
for inp in model.input:
if isinstance(inp, str):
indents[inp] = 0
init_names.add(inp)
else:
indents[inp.name] = 0
init_names.add(inp.name)
if hasattr(model, "initializer"):
for init in model.initializer:
indents[init.name] = 0
init_names.add(init.name)
try:
nodes = reorder_nodes_for_display(model.node, verbose=verbose)
except RuntimeError as e: # pragma: no cover
if raise_exc:
raise e
else:
rows.append(f"ERROR: {e}")
nodes = model.node
previous_indent = None
previous_out = None
previous_in = None
for node in nodes:
add_break = False
name = node.name + "#" + "|".join(node.output)
if name in indents:
indent = indents[name]
if previous_indent is not None and indent < previous_indent:
if verbose:
print(f"[onnx_simple_text_plot] break1 {node.op_type}")
add_break = True
elif previous_in is not None and set(node.input) == previous_in:
indent = previous_indent
else:
inds = [indents.get(i, 0) for i in node.input if i not in init_names]
if not inds:
indent = 0
else:
mi = min(inds)
indent = mi
if previous_indent is not None and indent < previous_indent:
if verbose:
print( # pragma: no cover
f"[onnx_simple_text_plot] break2 {node.op_type}"
)
add_break = True
if not add_break and previous_out is not None:
if not (set(node.input) & previous_out):
if verbose:
print(f"[onnx_simple_text_plot] break3 {node.op_type}")
add_break = True
indent = 0
if add_break and verbose:
print("[onnx_simple_text_plot] add break")
for n in node.input:
if n in line_name_in:
line_name_in[n].append(len(rows))
else:
line_name_in[n] = [len(rows)]
for n in node.output:
line_name_new[n] = len(rows)
rows.append(str_node(indent if use_indentation else 0, node))
indents[name] = indent
for i, o in enumerate(node.output):
indents[o] = indent + 1
previous_indent = indents[name]
previous_out = set(node.output)
previous_in = set(node.input)
# outputs
if level == 0:
rows.append("----- output ----")
for out in model.output:
if isinstance(out, str):
if out in line_name_in:
line_name_in[out].append(len(rows))
else:
line_name_in[out] = [len(rows)]
rows.append(f"output: name={out!r} type={'?'} shape={'?'}")
else:
if out.name in line_name_in:
line_name_in[out.name].append(len(rows))
else:
line_name_in[out.name] = [len(rows)]
rows.append(
"output: name=%r type=%r shape=%r"
% (out.name, _get_type(out), _get_shape(out))
)
if add_links:
def _mark_link(rows, lengths, r1, r2, d):
maxl = max(lengths[r1], lengths[r2]) + d * 2
maxl = max(maxl, max(len(rows[r]) for r in range(r1, r2 + 1))) + 2
if rows[r1][-1] == "|":
p1, p2 = rows[r1][: lengths[r1] + 2], rows[r1][lengths[r1] + 2 :]
rows[r1] = p1 + p2.replace(" ", "-")
rows[r1] += ("-" * (maxl - len(rows[r1]) - 1)) + "+"
if rows[r2][-1] == " ":
rows[r2] += "<"
elif rows[r2][-1] == "|":
if "<" not in rows[r2]:
p = lengths[r2]
rows[r2] = rows[r2][:p] + "<" + rows[r2][p + 1 :]
p1, p2 = rows[r2][: lengths[r2] + 2], rows[r2][lengths[r2] + 2 :]
rows[r2] = p1 + p2.replace(" ", "-")
rows[r2] += ("-" * (maxl - len(rows[r2]) - 1)) + "+"
for r in range(r1 + 1, r2):
if len(rows[r]) < maxl:
rows[r] += " " * (maxl - len(rows[r]) - 1)
rows[r] += "|"
diffs = []
for n, r1 in line_name_new.items():
if n not in line_name_in:
continue
r2s = line_name_in[n]
for r2 in r2s:
if r1 >= r2:
continue
diffs.append((r2 - r1, (n, r1, r2)))
diffs.sort()
for i in range(len(rows)):
rows[i] += " "
lengths = [len(r) for r in rows]
for d, (n, r1, r2) in diffs:
if d == 1 and len(line_name_in[n]) == 1:
# no line for link to the next node
continue
_mark_link(rows, lengths, r1, r2, d)
# subgraphs
if recursive:
for node, name, g in subgraphs:
rows.append(
"----- subgraph ---- %s - %s - att.%s=%s -- level=%d -- %s -> %s"
% (
node.op_type,
node.name,
name,
_get_subgraph_name(id(g)),
level,
",".join(i.name for i in g.input),
",".join(i.name for i in g.output),
)
)
res = onnx_simple_text_plot(
g,
verbose=verbose,
att_display=att_display,
add_links=add_links,
recursive=recursive,
sub_graphs_names=sub_graphs_names,
level=level + 1,
raise_exc=raise_exc,
)
rows.append(res)
# functions
if functions and main_model is not None:
for fct in main_model.functions:
rows.append(f"----- function name={fct.name} domain={fct.domain}")
if fct.doc_string:
rows.append(f"----- doc_string: {fct.doc_string}")
res = onnx_simple_text_plot(
fct,
verbose=verbose,
att_display=att_display,
add_links=add_links,
recursive=recursive,
functions=False,
sub_graphs_names=sub_graphs_names,
level=1,
)
rows.append(res)
return "\n".join(rows)
[docs]def onnx_text_plot_io(model, verbose=False, att_display=None):
"""
Displays information about input and output types.
:param model: ONNX graph
:param verbose: display debugging information
:return: str
An ONNX graph is printed the following way:
.. runpython::
:showcode:
:warningout: DeprecationWarning, FutureWarning
import numpy
from sklearn.cluster import KMeans
from skl2onnx import to_onnx
from onnx_array_api.plotting.text_plot import onnx_text_plot_io
x = numpy.random.randn(10, 3)
y = numpy.random.randn(10)
model = KMeans(3)
model.fit(x, y)
onx = to_onnx(model, x.astype(numpy.float32),
target_opset=15)
text = onnx_text_plot_io(onx, verbose=False)
print(text)
"""
rows = []
if hasattr(model, "opset_import"):
for opset in model.opset_import:
rows.append(f"opset: domain={opset.domain!r} version={opset.version!r}")
if hasattr(model, "graph"):
model = model.graph
# inputs
for inp in model.input:
rows.append(
"input: name=%r type=%r shape=%r"
% (inp.name, _get_type(inp), _get_shape(inp))
)
# initializer
for init in model.initializer:
rows.append(
"init: name=%r type=%r shape=%r"
% (init.name, _get_type(init), _get_shape(init))
)
# outputs
for out in model.output:
rows.append(
"output: name=%r type=%r shape=%r"
% (out.name, _get_type(out), _get_shape(out))
)
return "\n".join(rows)