npx.npx_var#
Var#
- class onnx_array_api.npx.npx_var.Var(*inputs: List[Any], op: Callable | str | Tuple[str, str] | FunctionProto | ModelProto | NodeProto | None = None, dtype: type | DType | None = None, inline: bool = False, n_var_outputs: int = 1, input_indices: List[int] | None = None, **kwargs)[source]#
Defines a variable, a result…
- Parameters:
inputs – list of inputs
op – apply on operator on the inputs
inline – True to reduce the use of function and inline small functions, this only applies if op is a function
n_var_outputs – number of the operator outputs
input_indices – to select a specific output from the input operator
kwargs – operator attributes
Private attribute:
- Parameters:
onnx_input_type – names given to the variables
- property annotation#
Returns a type if known for the Var itself.
- flatten() Var [source]#
Flattens a matrix (see
numpy.ndarray.flatten()
).- Parameters:
axis – only flatten from axis to the end.
- Returns:
- get(index: int) Var [source]#
If an operator or a function returns more than one output, this takes only one.
- Parameters:
index – index of the output to select
- Returns:
Var
- property is_function#
Tells if this variable encapsulate a function.
- max(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var [source]#
See
numpy.max()
.
- mean(axis: OptParTypeTupleType_int | None = None, keepdims: ParTypeint = 0) Var [source]#
See
numpy.mean()
.
- min(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var [source]#
See
numpy.min()
.
- prod(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var [source]#
See
numpy.prod()
.
- reduce_function(reduce_op, axis: OptTensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var [source]#
See
numpy.sum()
or any other reduce function.
- replace_inputs(new_inputs: List[Var], input_indices: List[int] | None = None) Var [source]#
Replaces inputs by new ones. It creates a copy. It is needed when inlining functions.
- property self_var#
Returns itself or the variable corresponding to its state after a call to __setitem__.
- set_onnx_name(prefix: str)[source]#
Forces this variable to get this name during
- Parameters:
prefix – prefix
- sum(axis: TensorType_I__DT7 | None = None, keepdims: ParTypeint = 0) Var [source]#
See
numpy.sum()
.
- to_onnx(target_opsets: Dict[str, int] | None = None, as_function: bool = False, name: str | None = None, domain: str | None = None, attributes: List[str] | None = None, constraints: Dict[Any, TensorType] | None = None, ir_version: int | None = None) ModelProto | FunctionProto | List[Any] [source]#
Converts the recursive graph to ONNX.
- Parameters:
target_opsets – dictionary {opset: version}
as_function – conversion to
onnx.FunctionProto
oronnx.ModelProto
name – function name if as_function is True
domain – function domain if as_function is True
attributes – function attributes if any
constraints – specifies a precise type for the type constraints when a function allows more than one type, this works if there is only one variable to be converted
- Returns:
ModelProto, FunctionProto
Cst, Input#
ManyIdentity#
- class onnx_array_api.npx.npx_var.ManyIdentity(*inputs, input_indices=None)[source]#
Holds several instances of
Var
.- to_onnx(target_opsets: Dict[str, int] | None = None, as_function: bool = False, name: str | None = None, domain: str | None = None, attributes: List[str] | None = None, constraints: Dict[Any, TensorType] | None = None, ir_version: int | None = None) ModelProto | FunctionProto | List[Any] [source]#
Converts the recursive graph to ONNX.
- Parameters:
target_opsets – dictionary {opset: version}, if None, it is replaced by DEFAULT_OPSETS
as_function – conversion to
onnx.FunctionProto
oronnx.ModelProto
name – function name if as_function is True
domain – function domain if as_function is True
attributes – function attributes if any
constraints – specifies a precise type for the type constraints when a function allows more than one type, this works if there is only one variable to be converted
- Returns:
ModelProto, FunctionProto
Par#
- class onnx_array_api.npx.npx_var.Par(name: str, dtype: ParType, value: Any | None = None, parent_op: Tuple[str, str, int] | None = None)[source]#
Defines a named parameter.
- Parameters:
name – parameter name
dtype – parameter type (bool, int, str, float)
value – value of the parameter if known
parent_op – node type it belongs to
- property onnx_type#
Returns the corresponding onnx type.