Source code for onnx_array_api.npx.npx_var

from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
from onnx import FunctionProto, ModelProto, NodeProto, TensorProto
from .npx_array_api import BaseArrayApi, ArrayApiError
from .npx_constants import DEFAULT_OPSETS, ONNX_DOMAIN
from .npx_types import (
    DType,
    ElemType,
    OptParType,
    ParType,
    TensorType,
    OptTensorType,
    TupleType,
)


[docs]class Par: """ Defines a named parameter. :param name: parameter name :param dtype: parameter type (bool, int, str, float) :param value: value of the parameter if known :param parent_op: node type it belongs to """ def __init__( self, name: str, dtype: ParType, value: Optional[Any] = None, parent_op: Optional[Tuple[str, str, int]] = None, ): if not issubclass(dtype, ParType): raise TypeError( f"dtype for parameter {name!r} must be of " f"ParType not {dtype}." ) if parent_op is None: raise ValueError(f"parent_op must be filled for paramenter {name!r}.") self.name = name self.dtype = dtype self.value = value self.parent_op = parent_op def __repr__(self): "usual" if self.value is None: return ( f"{self.__class__.__name__}({self.name!r}, {self.dtype.type_name()}, " f"parent_op={self.parent_op!r})" ) return ( f"{self.__class__.__name__}" f"({self.name!r}, {self.dtype.type_name()}, {self.value!r}, " f"parent_op={self.parent_op!r})" ) @property def onnx_type(self): "Returns the corresponding onnx type." return self.dtype.onnx_type() def __eq__(self, x): "Should not be used." raise NotImplementedError("__eq__ should not be used.") def __neq__(self, x): "Should not be used." raise NotImplementedError("__neq__ should not be used.") def __lt__(self, x): "Should not be used." raise NotImplementedError("__lt__ should not be used.") def __gt__(self, x): "Should not be used." raise NotImplementedError("__gt__ should not be used.") def __le__(self, x): "Should not be used." raise NotImplementedError("__le__ should not be used.") def __ge__(self, x): "Should not be used." raise NotImplementedError("__ge__ should not be used.")
[docs]class ManyIdentity: """ Holds several instances of :class:`Var <onnx_array_api.npx.npx_var.Var>`. """ def __init__(self, *inputs, input_indices=None): self.inputs = inputs self.onnx_op = None if input_indices is None: self.input_indices = [0 for i in self.inputs] else: self.input_indices = input_indices self.n_var_outputs = len(self.inputs) self.onnx_op_kwargs = {} self._prefix = "ManyIdentity_" def __repr__(self) -> str: "usual" args = list(map(repr, self.inputs)) if max(self.input_indices) > 0: args.append(f"input_indices={self.input_indices}") s = ", ".join(args) return f"{self.__class__.__name__}({s})" def __len__(self): "Returns the number of merged variables." return len(self.inputs) def __getitem__(self, i): "Returns the ith elements." return self.inputs[i]
[docs] def to_onnx( self, target_opsets: Optional[Dict[str, int]] = None, as_function: bool = False, name: Optional[str] = None, domain: Optional[str] = None, attributes: Optional[List[str]] = None, constraints: Optional[Dict[Any, TensorType]] = None, ir_version: Optional[int] = None, ) -> Union[ModelProto, FunctionProto, List[Any]]: """ Converts the recursive graph to ONNX. :param target_opsets: dictionary `{opset: version}`, if None, it is replaced by `DEFAULT_OPSETS` :param as_function: conversion to :class:`onnx.FunctionProto` or :class:`onnx.ModelProto` :param name: function name if *as_function* is True :param domain: function domain if *as_function* is True :param attributes: function attributes if any :param constraints: specifies a precise type for the type constraints when a function allows more than one type, this works if there is only one variable to be converted :return: ModelProto, FunctionProto """ from .npx_graph_builder import _GraphBuilder # Var.to_onnx if target_opsets is None: target_opsets = DEFAULT_OPSETS.copy() g = _GraphBuilder( target_opsets, as_function=as_function, name=name, domain=domain, attributes=attributes, constraints=constraints, ir_version=ir_version, ) done = set() outputs = [] for var in self.inputs: vs = var._get_vars() for var2 in vs: key = id(var2) if key in done: continue g.append(var2) done.add(key) outputs.append(vs[-1]) onx = g.to_onnx(output_vars=outputs) if as_function: if len(outputs) != len(onx.output): raise RuntimeError( f"Mismatch number of outputs, expecting {len(outputs)}, " f"got ({len(onx.output)})." ) if len(g.functions_) > 0: return [g.functions_, onx] return onx if len(outputs) != len(onx.graph.output): raise RuntimeError( f"Mismatch number of outputs, expecting {len(outputs)}, " f"got ({len(onx.graph.output)})." ) return onx
[docs]class Var(BaseArrayApi): """ Defines a variable, a result... :param inputs: list of inputs :param op: apply on operator on the inputs :param inline: True to reduce the use of function and inline small functions, this only applies if *op* is a function :param n_var_outputs: number of the operator outputs :param input_indices: to select a specific output from the input operator :param kwargs: operator attributes Private attribute: :param onnx_input_type_: names given to the variables """ def __array_namespace__(self, api_version: Optional[str] = None): """ Raises an exception if called. """ raise RuntimeError( f"This function should never be called for class {type(self)}. " f"It should be called for an eager tensor." ) @staticmethod def get_cst_var(): from .npx_core_api import cst, var return cst, var class _setter_do: def __init__(self, parent: "Var", *args): self.parent = parent.self_var self.args = args def __call__(self, new_values): """ Returns a copy of `self.parent` where values whose indices are indicated by `args` and new values by `new_values`. """ if len(self.args) == 1 and isinstance(self.args[0], (int, slice)): return self._setitem1_slice(self.args[0], new_values) if len(self.args) == 1 and isinstance(self.args[0], Var): return self._setitem1_where(self.args[0], new_values) raise NotImplementedError( f"This expression is not yet implemented for args={self.args}." ) def _setitem1_where(self, index, new_values): cst, var = Var.get_cst_var() if isinstance(new_values, (int, float, bool)): new_values = np.array(new_values) if isinstance(new_values, np.ndarray): value = var(cst(new_values), self.parent, op="CastLike") elif isinstance(new_values, Var): value = new_values else: raise TypeError(f"Unexpected type for new_values: {type(new_values)}.") return var(index, value, self.parent, op="Where") def _setitem1_slice(self, index, new_values): cst, var = Var.get_cst_var() if isinstance(index, slice): start = 0 if index.start is None else index.start stop = index.stop step = index.step elif isinstance(index, int): start, stop, step = index, index + 1, 1 else: raise NotImplementedError( f"Unable to assign new values due to " f"unexpected type {type(index)!r}." ) inp = self.parent if stop is None and isinstance(new_values, np.ndarray): stop = start + new_values.size if stop is None: raise NotImplementedError(f"No implementation if stop is {stop}.") indices = np.arange(start, stop, step or 1).astype(np.int64) if isinstance(new_values, np.ndarray): values = new_values else: values = np.full(indices.shape, new_values) return var(inp, cst(indices), cst(values), op="ScatterElements", axis=0) class _setter: def __init__(self, parent: "Var"): self.parent = parent def __getitem__(self, *args): return Var._setter_do(self.parent, *args) def __init__( self, *inputs: List[Any], op: Optional[ Union[Callable, str, Tuple[str, str], FunctionProto, ModelProto, NodeProto] ] = None, dtype: Optional[Union[type, DType]] = None, inline: bool = False, n_var_outputs: int = 1, input_indices: Optional[List[int]] = None, **kwargs, ): self.inputs = list(inputs) self.n_var_outputs = n_var_outputs self.inline = inline self._annotation = None if op is None: self.onnx_op = None # a constant elif isinstance(op, tuple): self.onnx_op = op # domain, operator name elif isinstance(op, str): self.onnx_op = ("", op) # operator name elif isinstance(op, (FunctionProto, ModelProto, NodeProto)): self.onnx_op = (ONNX_DOMAIN, op) else: self.onnx_op = (None, op) # function to call self.onnx_op_kwargs = kwargs self._prefix = None if isinstance(dtype, DType): # regular parameter self.onnx_op_kwargs["dtype"] = dtype elif hasattr(dtype, "type_name"): self.dtype = dtype elif dtype is None: self.dtype = None else: raise TypeError(f"Unexpected type {type(dtype)} for dtype.") updates = {} for i, inp in enumerate(self.inputs): if isinstance(inp, type): raise TypeError(f"Unexpected type for input {i} - {inp}.") if isinstance(inp, Var): updates[i] = inp.self_var if not isinstance(inp, np.ndarray): continue if inp.size > 0 and isinstance(inp.ravel()[0], (np.ndarray, Var)): raise TypeError( f"Unexpected type for input {i}: {type(inp)}, " f"{inp.ravel()[0]}, op={op!r}" ) # This step is needed when Var.__setitem__ was called to # modify the variable. for i, v in updates.items(): self.inputs[i] = v self.inputs = tuple(self.inputs) if input_indices is None: self.input_indices = [0 for i in self.inputs] elif not isinstance(input_indices, list): raise TypeError( f"input_indices is {type(input_indices)} " f"but len(inputs)={len(inputs)}." ) else: self.input_indices = input_indices if len(self.input_indices) != len(self.inputs): raise RuntimeError( f"length mismatch len(self.input_indices)=" f"{len(self.input_indices)} != len(self.inputs)=" f"{len(self.inputs)}." ) if self.onnx_op is None: if not isinstance(self, (Input, Cst)): raise RuntimeError(f"This case is not allowed: {self!r}.") self.set = Var._setter(self) self.current_var_ = None @property def annotation(self): """Returns a type if known for the Var itself.""" if self._annotation is None: if "dtype" in self.onnx_op_kwargs: dtype = self.onnx_op_kwargs["dtype"] if isinstance(dtype, DType): return TensorType[dtype] return self._annotation @property def self_var(self): """ Returns itself or the variable corresponding to its state after a call to `__setitem__`. """ if not hasattr(self, "current_var_"): raise AttributeError( f"Class {type(self)} is missing attribute 'current_var_'." ) return self if self.current_var_ is None else self.current_var_ def __call__(self): return self.self_var
[docs] def replace_inputs( self, new_inputs: List["Var"], input_indices: Optional[List[int]] = None ) -> "Var": """ Replaces inputs by new ones. It creates a copy. It is needed when inlining functions. """ new_var = Var( *new_inputs, op=self.onnx_op, dtype=self.dtype, inline=self.inline, input_indices=input_indices, n_var_outputs=self.n_var_outputs, **self.onnx_op_kwargs, ) new_var._prefix = self._prefix return new_var
def __repr__(self) -> str: "usual" args = [] for inp in self.inputs: n = inp.__class__.__name__ args.append(f"{n[0]}.") if self.onnx_op is not None: args.append(f"op={self.onnx_op!r}") if self.n_var_outputs != 1: args.append(f"n_var_outputs={self.n_var_outputs!r}") if max(self.input_indices) != 0: args.append(f"input_indices={self.input_indices!r}") for k, v in sorted(self.onnx_op_kwargs.items()): args.append(f"{k}={v!r}") res = f"{self.__class__.__name__}({', '.join(args)})" return res
[docs] def set_onnx_name(self, prefix: str): """ Forces this variable to get this name during :param prefix: prefix """ self._prefix = prefix
def _get_vars(self): vs = [] stack = [self.self_var] replacement = {} replacement_cst = {} deleted = [] while len(stack) > 0: var = stack.pop() key = id(var) if key in replacement: while key in replacement: var = replacement[key] key = id(var) if var.onnx_op is not None and var.onnx_op[0] is None and var.inline: fct = var.onnx_op[1] applied = fct(*var.inputs, **var.onnx_op_kwargs) if isinstance(applied, (ManyIdentity, Var)): stack.append(applied) replacement[id(var)] = applied deleted.append(var) continue raise TypeError( f"Unexpected type {type(applied)} as output of " f"function {fct}." ) vs.append(var) for i in reversed(var.inputs): if isinstance(i, Var): stack.insert(0, i) continue if isinstance(i, np.ndarray): cst = Var.get_cst_var()[0] replacement_cst[id(i)] = cst(i) continue if isinstance(i, (int, float, bool)): cst = Var.get_cst_var()[0] replacement_cst[id(i)] = cst(np.array(i)) continue if isinstance(i, tuple): if all(map(lambda x: isinstance(x, int), i)): cst = Var.get_cst_var()[0] replacement_cst[id(i)] = cst(np.array(list(i), dtype=np.int64)) continue if any(map(lambda t: isinstance(t, Var), i)): raise TypeError( f"Unexpected types in tuple " f"({[type(t) for t in i]}), " f"function {self.f} from module {self.f.__module__!r}." ) raise TypeError( f"Unsupported tuple {i!r}, " f"function {self.f} from module {self.f.__module__!r}." ) if i is None: continue raise TypeError( f"Unexpected type {type(i)} for an input of node {var}." ) res = list(reversed(vs)) # replacement: a node calling a function can either # remains as a call to a local function or the code # of the function can replace the call inline. # replacement keeps a map of function call to replace # by the return itself to avoid calling the same function # twice. new_res = [] for r in res: new_inputs = [] new_indices = [] repl = False for v, ind in zip(r.inputs, r.input_indices): key = id(v) if key in replacement: while key in replacement: var = replacement[key] key = id(var) new_inputs.append(var) new_indices.append(ind) repl = True else: new_inputs.append(v) new_indices.append(ind) if repl: new_r = r.replace_inputs(new_inputs, input_indices=new_indices) replacement[id(r)] = new_r new_res.append(new_r) else: new_res.append(r) # check the graph is consistent known = {} for r in new_res: known[id(r)] = r if isinstance(r, (Cst, Input)): continue for ind, i in enumerate(r.inputs): if i is None: # optional input continue if id(i) in replacement_cst: # constant to replace continue if id(i) not in known: raise RuntimeError( f"An input {ind} ({id(i)}, type={type(i)}) from " f"{id(r)}-{r} is not known, it is not produced by a " f"previous var (scheduled for replacement: " f"{id(i) in replacement}). This also happens if " f"a constant is not wrapped by 'cst(.)'." ) return new_res @property def is_function(self): """ Tells if this variable encapsulate a function. """ return self.onnx_op is not None and self.onnx_op[0] is None
[docs] def to_onnx( self, target_opsets: Optional[Dict[str, int]] = None, as_function: bool = False, name: Optional[str] = None, domain: Optional[str] = None, attributes: Optional[List[str]] = None, constraints: Optional[Dict[Any, TensorType]] = None, ir_version: Optional[int] = None, ) -> Union[ModelProto, FunctionProto, List[Any]]: """ Converts the recursive graph to ONNX. :param target_opsets: dictionary `{opset: version}` :param as_function: conversion to :class:`onnx.FunctionProto` or :class:`onnx.ModelProto` :param name: function name if *as_function* is True :param domain: function domain if *as_function* is True :param attributes: function attributes if any :param constraints: specifies a precise type for the type constraints when a function allows more than one type, this works if there is only one variable to be converted :return: ModelProto, FunctionProto """ from .npx_graph_builder import _GraphBuilder # Var.to_onnx if target_opsets is None: target_opsets = DEFAULT_OPSETS vs = self._get_vars() g = _GraphBuilder( target_opsets, as_function=as_function, name=name, domain=domain, attributes=attributes, constraints=constraints, ir_version=ir_version, ) for var in vs: g.append(var) onx = g.to_onnx() if as_function and len(g.functions_) > 0: return [g.functions_, onx] return onx
# Operators def __iter__(self): """ The :epkg:`Array API` does not define this function (2022/12). This method raises an exception with a better error message. """ raise ArrayApiError( f"Iterators are not implemented in the generic case. " f"Every function using them cannot be converted into ONNX " f"(Var - {type(self)})." ) def _binary_op(self, ov: "Var", op_name: str, **kwargs) -> "Var": var = Var.get_cst_var()[1] if isinstance(ov, (int, float, bool, np.ndarray, Cst)): return var(self.self_var, var(ov, self.self_var, op="CastLike"), op=op_name) return var(self.self_var, ov, op=op_name, **kwargs) def _binary_op_right(self, ov: "Var", op_name: str, **kwargs) -> "Var": var = Var.get_cst_var()[1] if isinstance(ov, (int, float, bool, np.ndarray, Cst)): return var(var(ov, self.self_var, op="CastLike"), self.self_var, op=op_name) return var(ov, self.self_var, op=op_name, **kwargs) def __neg__(self) -> "Var": """ Automatically adds operator `Neg` to the graph. It does not cast automatically. """ var = Var.get_cst_var()[1] return var(self.self_var, op="Neg") def __invert__(self) -> "Var": """ Automatically adds operator `BitwiseNot` to the graph. It does not cast automatically. """ var = Var.get_cst_var()[1] return var(self.self_var, op="BitwiseNot") def __add__(self, ov: "Var") -> "Var": """ Automatically adds operator `Add` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Add") def __radd__(self, ov: "Var") -> "Var": """ Automatically adds operator `Add` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "Add") def __sub__(self, ov: "Var") -> "Var": """ Automatically adds operator `Sub` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Sub") def __rsub__(self, ov: "Var") -> "Var": """ Automatically adds operator `Sub` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "Sub") def __mul__(self, ov: "Var") -> "Var": """ Automatically adds operator `Mul` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Mul") def __rmul__(self, ov: "Var") -> "Var": """ Automatically adds operator `Mul` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "Mul") def __matmul__(self, ov: "Var") -> "Var": """ Automatically adds operator `MatMul` to the graph. It does not cast automatically. `__rmatmul__` would not be called as a numpy array overwrites `__matmul__` on its side. """ return self._binary_op(ov, "MatMul") def __truediv__(self, ov: "Var") -> "Var": """ Automatically adds operator `Div` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Div") def __rtruediv__(self, ov: "Var") -> "Var": """ Automatically adds operator `Div` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "Div") def __mod__(self, ov: "Var") -> "Var": """ Automatically adds operator `Mod` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Mod") def __rmod__(self, ov: "Var") -> "Var": """ Automatically adds operator `Mod` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "Mod") def __pow__(self, ov: "Var") -> "Var": """ Automatically adds operator `Pow` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Pow") def __rpow__(self, ov: "Var") -> "Var": """ Automatically adds operator `Pow` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "Pow") def __lt__(self, ov: "Var") -> "Var": """ Automatically adds operator `Less` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Less") def __le__(self, ov: "Var") -> "Var": """ Automatically adds operator `LessOrEqual` to the graph. It does not cast automatically. """ return self._binary_op(ov, "LessOrEqual") def __gt__(self, ov: "Var") -> "Var": """ Automatically adds operator `Greater` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Greater") def __ge__(self, ov: "Var") -> "Var": """ Automatically adds operator `GreaterOrEqual` to the graph. It does not cast automatically. """ return self._binary_op(ov, "GreaterOrEqual") def __eq__(self, ov: "Var") -> "Var": """ Automatically adds operator `Equal` to the graph. It does not cast automatically. """ return self._binary_op(ov, "Equal") def __ne__(self, ov: "Var") -> "Var": """ Automatically adds operator `Not + Equal` to the graph. It does not cast automatically. """ var = Var.get_cst_var()[1] return var(self._binary_op(ov, "Equal"), op="Not") def __lshift__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitShift` to the graph. It does not cast automatically. """ return self._binary_op(ov, "BitShift", direction="LEFT") def __rshift__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitShift` to the graph. It does not cast automatically. """ return self._binary_op(ov, "BitShift", direction="RIGHT") def __and__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitwiseAnd` to the graph. It does not cast automatically. """ return self._binary_op(ov, "BitwiseAnd") def __rand__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitwiseAnd` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "BitwiseAnd") def __or__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitwiseOr` to the graph. It does not cast automatically. """ return self._binary_op(ov, "BitwiseOr") def __ror__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitwiseOr` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "BitwiseOr") def __xor__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitwiseXor` to the graph. It does not cast automatically. """ return self._binary_op(ov, "BitwiseXor") def __rxor__(self, ov: "Var") -> "Var": """ Automatically adds operator `BitwiseXor` to the graph. It does not cast automatically. """ return self._binary_op_right(ov, "BitwiseXor") @property def T(self) -> "Var": "Transpose." var = Var.get_cst_var()[1] return var(self.self_var, op="Transpose", perm=[1, 0])
[docs] def astype(self, dtype) -> "Var": "Cast" var = Var.get_cst_var()[1] if isinstance(dtype, Var): return var(self.self_var, dtype, op="CastLike") if not isinstance(dtype, DType): raise TypeError(f"dtype cannot be {type(dtype)}.") return var(self.self_var, op="Cast", to=dtype)
@property def shape(self) -> "Var": "Shape" var = Var.get_cst_var()[1] return var(self.self_var, op="Shape")
[docs] def reshape(self, shape: "Var") -> "Var": "Reshape" cst, var = Var.get_cst_var() if isinstance(shape, (tuple, list)): shape = np.array(shape, dtype=np.int64) else: shape = var(shape, cst(np.array([-1], dtype=np.int64)), op="Reshape") return var(self.self_var, shape, op="Reshape")
[docs] def reduce_function( self, reduce_op, axis: OptTensorType[ElemType.int64, "I"] = None, keepdims: ParType[int] = 0, ) -> "Var": "See :func:`numpy.sum` or any other reduce function." var = Var.get_cst_var()[1] if axis is None: return var(self.self_var, op=reduce_op, keepdims=keepdims) if isinstance(axis, int): axis = [axis] if isinstance(axis, (tuple, list)): cst = Var.get_cst_var()[0] axis = cst(np.array(axis, dtype=np.int64)) return var(self.self_var, axis, op=reduce_op, keepdims=keepdims)
[docs] def sum( self, axis: TensorType[ElemType.int64, "I"] = None, keepdims: ParType[int] = 0 ) -> "Var": "See :func:`numpy.sum`." return self.reduce_function("ReduceSum", axis=axis, keepdims=keepdims)
[docs] def mean( self, axis: OptParType[TupleType[int]] = None, keepdims: ParType[int] = 0 ) -> "Var": "See :func:`numpy.mean`." return self.reduce_function("ReduceMean", axis=axis, keepdims=keepdims)
[docs] def min( self, axis: TensorType[ElemType.int64, "I"] = None, keepdims: ParType[int] = 0 ) -> "Var": "See :func:`numpy.min`." return self.reduce_function("ReduceMin", axis=axis, keepdims=keepdims)
[docs] def max( self, axis: TensorType[ElemType.int64, "I"] = None, keepdims: ParType[int] = 0 ) -> "Var": "See :func:`numpy.max`." return self.reduce_function("ReduceMax", axis=axis, keepdims=keepdims)
[docs] def prod( self, axis: TensorType[ElemType.int64, "I"] = None, keepdims: ParType[int] = 0 ) -> "Var": "See :func:`numpy.prod`." return self.reduce_function("ReduceProd", axis=axis, keepdims=keepdims)
[docs] def copy(self) -> "Var": """ Returns a copy of self (use of Identity node). """ var = Var.get_cst_var()[1] return var(self.self_var, op="Identity")
[docs] def flatten(self) -> "Var": """ Flattens a matrix (see :meth:`numpy.ndarray.flatten`). :param axis: only flatten from axis to the end. :return: :class:`Var <onnx_array_api.npx.npx_var.Var>` """ cst, var = Var.get_cst_var() return var( var(self.self_var, op="Flatten", axis=0), cst(np.array([0], dtype=np.int64)), op="Squeeze", )
[docs] def get(self, index: int) -> "Var": """ If an operator or a function returns more than one output, this takes only one. :param index: index of the output to select :return: Var """ if index < 0 or index >= self.n_var_outputs: raise ValueError( f"index={index} must be positive and < {self.n_var_outputs} " f"for var={self!r}." ) return Var(self.self_var, input_indices=[index], op="Identity")
def __getitem__(self, index: Any) -> "Var": """ Deals with multiple scenarios. * *index* is an integer and the object produces multiple outputs and this returns one of them (**scenario 0**) * *index* is an integer or a slice, a tuple of integers and slices, example: `[0, 1]`, `[:5, :6]`, `[::2]` (**scenario 1**) * *index* is an *ONNX* object (more precisely an instance of :class:`Var <onnx_array_api.npx.npx_var.Var>`), then the method assumes it is an array of boolean to select a subset of the tensor along the first axis, example: `mat[mat == 0]` (**scenario 2**) """ cst, var = Var.get_cst_var() if self.n_var_outputs != 1: # Multioutput if not isinstance(index, int): raise TypeError( f"Only indices are allowed when selecting an output, " f"not {type(index)})." ) return self.get(index) if isinstance(index, Var): # scenario 2 # we rely on the annotation if it exists if index.annotation is None: dtype_bool = True elif issubclass(index.annotation, TensorType): if index.annotation.supports_dtype( DType(TensorProto.INT64) ) or index.annotation.supports_dtype(DType(TensorProto.INT32)): dtype_bool = False elif index.annotation.supports_dtype(DType(TensorProto.BOOL)): dtype_bool = True else: raise TypeError( f"Unexpected dtype for annotation={index.annotation!r} " f"for index={index!r}." ) else: raise TypeError( f"Unexpected annotation={index.annotation!r} " f"for index={index!r}." ) if dtype_bool: # TODO: fix this when index is an integer and the annotation unknown # it needs to support subgraph and tests new_shape = cst(np.array([-1], dtype=np.int64)) new_self = self.reshape(new_shape) new_index = index.reshape(new_shape) return var(new_self, new_index, op="Compress") # dtype is int return var(self, index, axis=0, op="Gather") if isinstance(index, int): # Use Gather instead. return var(self, cst(np.array(index, dtype=np.int64)), axis=0, op="Gather") if not isinstance(index, tuple): index = (index,) elif len(index) == 0: # The array contains a scalar and it needs to be returned. return var(self, op="Identity") # only one integer? ni = None ax = None for i, a in enumerate(index): if isinstance(a, int): if ni is None: ni = i ax = a else: ax = None ni = None break if ( isinstance(a, slice) and a.start is None and a.stop is None and a.step is None ): continue ax = None ni = None break if ni is not None and ax is not None: # Use Gather instead. return var(self, cst(np.array(ni, dtype=np.int64)), axis=ax, op="Gather") # scenario 1 starts = [] ends = [] axes = [] steps = [] axis_squeeze = [] needs_shape = [] for i, ind in enumerate(index): if isinstance(ind, int): starts.append(ind) ends.append(ind + 1) axes.append(i) steps.append(1) axis_squeeze.append(i) continue if isinstance(ind, slice): if ind.start is None and ind.stop is None and ind.step is None: continue start = 0 if ind.start is None else ind.start end = (None, i) if ind.stop is None else ind.stop step = 1 if ind.step is None else ind.step starts.append(start) ends.append(end) axes.append(i) steps.append(step) if isinstance(end, tuple): needs_shape.append(len(ends) - 1) elif isinstance(end, Var): needs_shape.append(end) continue raise NotImplementedError(f"Not implemented for type {type(ind)!r}.") if max(steps) == min(steps) == 1: steps = None else: steps = np.array(steps, dtype=np.int64) starts = np.array(starts, dtype=np.int64) axes = np.array(axes, dtype=np.int64) if len(needs_shape) > 0: shape = self.shape conc = [] for e in ends: if isinstance(e, tuple): conc.append( var(shape, cst(np.array([e[1]], np.int64)), op="Gather") ) elif isinstance(e, Var): conc.append(e.reshape(np.array([-1], dtype=np.int64))) else: conc.append(np.array([e], dtype=np.int64)) if len(conc) > 1: conc_cst = [v if isinstance(v, Var) else cst(v) for v in conc] ends = var(*conc_cst, op="Concat", axis=0) else: ends = conc[0] else: ends = np.array(ends, dtype=np.int64) sliced_args = [starts, ends, axes] if steps is not None: sliced_args.append(steps) sliced_args_cst = [v if isinstance(v, Var) else cst(v) for v in sliced_args] sliced = var(self.self_var, *sliced_args_cst, op="Slice") if len(axis_squeeze) > 0: return var( sliced, cst(np.array(axis_squeeze, dtype=np.int64)), op="Squeeze", ) return sliced def __setitem__(self, index, values): new_op = self.set[index](values) self.current_var_ = new_op self.input_indices = None
[docs]class Input(Var): """ Defines an input, a placeholder. :param name: input name or None if undefined :param annotation: annotation if any is available """ def __init__(self, name: str = None, annotation: Optional[type] = None): Var.__init__(self) self.name = name self._prefix = name or "I" self._annotation = annotation def __repr__(self): if self.annotation is None: return f"{self.__class__.__name__}({self.name!r})" return ( f"{self.__class__.__name__}({self.name!r}, " f"{self._annotation.__name__!r})" ) @property def annotation(self): return self._annotation
[docs]class Cst(Var): """ Defines a constant. """ def __init__(self, cst: Any): if isinstance(cst, np.ndarray): Var.__init__(self, cst, op="Identity") elif isinstance(cst, bool): Var.__init__(self, np.array(cst, dtype=np.bool_), op="Identity") elif isinstance(cst, int): Var.__init__(self, np.array(cst, dtype=np.int64), op="Identity") elif isinstance(cst, float): Var.__init__(self, np.array(cst, dtype=np.float64), op="Identity") elif isinstance(cst, list): if all(map(lambda t: isinstance(t, bool), cst)): Var.__init__(self, np.array(cst, dtype=np.bool_), op="Identity") elif all(map(lambda t: isinstance(t, (int, bool)), cst)): Var.__init__(self, np.array(cst, dtype=np.int64), op="Identity") elif all(map(lambda t: isinstance(t, (float, int, bool)), cst)): Var.__init__(self, np.array(cst, dtype=np.float64), op="Identity") else: raise ValueError( f"Unable to convert cst (type={type(cst)}), " f"value={cst}." ) else: raise NotImplementedError( f"Constant of type {type(cst)} are not implemented yet. " f"You should not use 'float32(x)' but 'array(x, dtype=float32)'." ) self._prefix = "cst"