plotting#
Dot#
- onnx_array_api.plotting.dot_plot.to_dot(proto: ModelProto, recursive: bool = False, prefix: str = '', use_onnx: bool = False, add_functions: bool = True, rt_shapes: Dict[str, Tuple[int, ...]] | None = None, **params) str [source]#
Produces a DOT language string for the graph.
- Parameters:
params – additional params to draw the graph
recursive – also show subgraphs inside operator like Scan
prefix – prefix for every node name
use_onnx – use onnx dot format instead of this one
add_functions – add functions to the graph
rt_shapes – indicates shapes obtained from the execution or inference
- Returns:
string
Default options for the graph are:
options = { 'orientation': 'portrait', 'ranksep': '0.25', 'nodesep': '0.05', 'width': '0.5', 'height': '0.1', 'size': '7', }
One example:
<<<
import numpy as np # B from onnx_array_api.npx import absolute, jit_onnx from onnx_array_api.plotting.dot_plot import to_dot def l1_loss(x, y): return absolute(x - y).sum() def l2_loss(x, y): return ((x - y) ** 2).sum() def myloss(x, y): return l1_loss(x[:, 0], y[:, 0]) + l2_loss(x[:, 1], y[:, 1]) jitted_myloss = jit_onnx(myloss) x = np.array([[0.1, 0.2], [0.3, 0.4]], dtype=np.float32) y = np.array([[0.11, 0.22], [0.33, 0.44]], dtype=np.float32) res = jitted_myloss(x, y) print(res)
>>>
0.042
Statistics#
- onnx_array_api.plotting.stat_plot.plot_ort_profile(df: DataFrame, ax0: Any | None = None, ax1: Any | None = None, title: str | None = None) Any [source]#
Plots time spend in computation based on dataframe produced by function
ort_profile
.- Parameters:
df – dataframe
ax0 – first axis to draw time
ax1 – second axis to draw occurences
title – graph title
- Returns:
ax0
See Profiling for an example.
Text#
- onnx_array_api.plotting.text_plot.onnx_text_plot_tree(node)[source]#
Gives a textual representation of a tree ensemble.
- Parameters:
node – TreeEnsemble*
- Returns:
text
<<<
import numpy from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeRegressor from skl2onnx import to_onnx from onnx_array_api.plotting.text_plot import onnx_text_plot_tree iris = load_iris() X, y = iris.data.astype(numpy.float32), iris.target clr = DecisionTreeRegressor(max_depth=3) clr.fit(X, y) onx = to_onnx(clr, X) res = onnx_text_plot_tree(onx.graph.node[0]) print(res)
>>>
n_targets=1 n_trees=1 ---- treeid=0 n X2 <= 2.4499998 -n X3 <= 1.75 -n X2 <= 4.85 -f 0:2 +f 0:1.67 +n X2 <= 4.95 -f 0:1.67 +f 0:1.02 +f 0:0
- onnx_array_api.plotting.text_plot.onnx_text_plot_io(model, verbose=False, att_display=None)[source]#
Displays information about input and output types.
- Parameters:
model – ONNX graph
verbose – display debugging information
- Returns:
str
An ONNX graph is printed the following way:
<<<
import numpy from sklearn.cluster import KMeans from skl2onnx import to_onnx from onnx_array_api.plotting.text_plot import onnx_text_plot_io x = numpy.random.randn(10, 3) y = numpy.random.randn(10) model = KMeans(3) model.fit(x, y) onx = to_onnx(model, x.astype(numpy.float32), target_opset=15) text = onnx_text_plot_io(onx, verbose=False) print(text)
>>>
opset: domain='' version=14 input: name='X' type=dtype('float32') shape=['', 3] init: name='Ad_Addcst' type=dtype('float32') shape=(3,) init: name='Ge_Gemmcst' type=dtype('float32') shape=(3, 3) init: name='Mu_Mulcst' type=dtype('float32') shape=(1,) output: name='label' type=dtype('int64') shape=[''] output: name='scores' type=dtype('float32') shape=['', 3]
- onnx_array_api.plotting.text_plot.onnx_simple_text_plot(model, verbose=False, att_display=None, add_links=False, recursive=False, functions=True, raise_exc=True, sub_graphs_names=None, level=1, indent=True)[source]#
Displays an ONNX graph into text.
- Parameters:
model – ONNX graph
verbose – display debugging information
att_display – list of attributes to display, if None, a default list if used
add_links – displays links of the right side
recursive – display subgraphs as well
functions – display functions as well
raise_exc – raises an exception if the model is not valid, otherwise tries to continue
sub_graphs_names – list of sub-graphs names
level – sub-graph level
indent – use indentation or not
- Returns:
str
An ONNX graph is printed the following way:
<<<
import numpy from sklearn.cluster import KMeans from skl2onnx import to_onnx from onnx_array_api.plotting.text_plot import onnx_simple_text_plot x = numpy.random.randn(10, 3) y = numpy.random.randn(10) model = KMeans(3) model.fit(x, y) onx = to_onnx(model, x.astype(numpy.float32), target_opset=15) text = onnx_simple_text_plot(onx, verbose=False) print(text)
>>>
opset: domain='' version=14 input: name='X' type=dtype('float32') shape=['', 3] init: name='Ad_Addcst' type=dtype('float32') shape=(3,) -- array([1.283, 1.025, 1.079], dtype=float32) init: name='Ge_Gemmcst' type=dtype('float32') shape=(3, 3) init: name='Mu_Mulcst' type=dtype('float32') shape=(1,) -- array([0.], dtype=float32) ReduceSumSquare(X, axes=[1], keepdims=1) -> Re_reduced0 Mul(Re_reduced0, Mu_Mulcst) -> Mu_C0 Gemm(X, Ge_Gemmcst, Mu_C0, alpha=-2.00, transB=1) -> Ge_Y0 Add(Re_reduced0, Ge_Y0) -> Ad_C01 Add(Ad_Addcst, Ad_C01) -> Ad_C0 ArgMin(Ad_C0, axis=1, keepdims=0) -> label Sqrt(Ad_C0) -> scores output: name='label' type=dtype('int64') shape=[''] output: name='scores' type=dtype('float32') shape=['', 3]
The same graphs with links.
<<<
import numpy from sklearn.cluster import KMeans from skl2onnx import to_onnx from onnx_array_api.plotting.text_plot import onnx_simple_text_plot x = numpy.random.randn(10, 3) y = numpy.random.randn(10) model = KMeans(3) model.fit(x, y) onx = to_onnx(model, x.astype(numpy.float32), target_opset=15) text = onnx_simple_text_plot(onx, verbose=False, add_links=True) print(text)
>>>
opset: domain='' version=14 input: name='X' type=dtype('float32') shape=['', 3] ----------------------------------------------------+-+ init: name='Ad_Addcst' type=dtype('float32') shape=(3,) -- array([2.485, 0.349, 4.587], dtype=float32) |-|-----------+ init: name='Ge_Gemmcst' type=dtype('float32') shape=(3, 3) ------------------------------------+ | | | init: name='Mu_Mulcst' type=dtype('float32') shape=(1,) -- array([0.], dtype=float32) -----+ | | | | ReduceSumSquare(X, axes=[1], keepdims=1) -> Re_reduced0 <--+-------------------------------|-+-|--------+ | | Mul(Re_reduced0, Mu_Mulcst) -> Mu_C0 <-------------------+-------------------------------+ | | | | Gemm(X, Ge_Gemmcst, Mu_C0, alpha=-2.00, transB=1) -> Ge_Y0 < ----------------------------|-+----------+ | Add(Re_reduced0, Ge_Y0) -> Ad_C01 <--------------------------------------------------------+ | Add(Ad_Addcst, Ad_C01) -> Ad_C0 ----------------+-+---------------------------------------------------------------+ ArgMin(Ad_C0, axis=1, keepdims=0) -> label <--+-|--+ Sqrt(Ad_C0) -> scores <-------------------------+--|-----+ output: name='label' type=dtype('int64') shape=[''] <----+ | output: name='scores' type=dtype('float32') shape=['', 3] <----+
Visually, it looks like the following: