onnx-diagnostic: investigate onnx models¶
The main feature is about patches: it helps exporting pytorch models into ONNX, mostly designed for LLMs using dynamic caches. Sources available at github/onnx-diagnostic.
with bypass_export_some_errors(patch_transformers=True) as f:
ep = torch.export.export(model, args, kwargs=kwargs, dynamic_shapes=dynamic_shapes)
# ...
It also implements tools to investigate, validate exported models (ExportedProgramm, ONNXProgram, …).
onnx_diagnostic.torch_export_patches.bypass_export_some_errors()
.
More
Getting started¶
git clone https://github.com/sdpython/onnx-diagnostic.git
cd onnx-diagnostic
pip install -e .
or
pip install onnx-diagnostic
Enlightening Examples¶
Torch Export
Use DYNAMIC or AUTO when exporting if dynamic shapes has constraints
Steel method forward to guess the dynamic shapes (with Tiny-LLM)
Investigate ONNX models
Some Usefuls Tools
import torch
from onnx_diagnostic.helpers import string_type
inputs = (
torch.rand((3, 4), dtype=torch.float16),
[
torch.rand((5, 6), dtype=torch.float16),
torch.rand((5, 6, 7), dtype=torch.float16),
]
)
# with shapes
print(string_type(inputs, with_shape=True))
>>> (T10s3x4,#2[T10s5x6,T10s5x6x7])
import onnx
from onnx_diagnostic.helpers import onnx_dtype_name
itype = onnx.TensorProto.BFLOAT16
print(onnx_dtype_name(itype))
print(onnx_dtype_name(7))
>>> BFLOAT16
>>> INT64
onnx_diagnostic.helpers.max_diff()
, …
The documentation was updated on:
2025-04-25 15:02:36.019013
With the following versions:
numpy: 2.2.5
ml_dtypes: 0.5.1
sklearn: 1.6.1
onnx: 1.19.0
onnxruntime: 1.22.0+cu126
onnxscript: 0.3.0.dev20250301
torch: 2.8.0.dev20250423+cu126
transformers: 4.52.0.dev0
timm: 1.0.14
has_onnxruntime_training: True
Size of the package:
lines chars
ext dir
.py 1396 39640
export 926 29144
helpers 3841 111389
reference 1337 38371
tasks 1119 37024
torch_export_patches 1502 53340
torch_models 5203 272134
torch_onnx 349 11207