onnx_diagnostic.tasks.text2text_generation¶
- onnx_diagnostic.tasks.text2text_generation.get_inputs(model: Module, config: Any | None, dummy_max_token_id: int, num_key_value_heads: int, num_hidden_layers: int, head_dim: int, encoder_dim: int, batch_size: int = 2, sequence_length: int = 30, sequence_length2: int = 3, add_second_input: bool = False, **kwargs)[source][source]¶
Generates input for task
text2text-generation
.- Parameters:
model – model to get the missing information
config – configuration used to generate the model
head_dim – last dimension of the cache
dummy_max_token_id – dummy max token id
batch_size – batch size
encoder_dim – last dimension of encoder_last_hidden_state
sequence_length – sequence length
sequence_length2 – new sequence length
- Returns:
dictionary
Stolen inputs for one model.
cache_position:T7s1 past_key_values:EncoderDecoderCache( self_attention_cache=DynamicCache( key_cache=#6[T1s1x8x1x64,...], value_cache=#6[T1s1x8x1x64,...]), cross_attention_cache=DynamicCache( key_cache=#6[T1s1x8x16x64,...], value_cache=#6[T1s1x8x16x64,...])), decoder_input_ids:T7s1x1, encoder_outputs:dict(last_hidden_state:T1s1x16x512)