Source code for pandas_streaming.df.connex_split

from collections import Counter
from logging import getLogger
from typing import Optional, Tuple
import pandas
import numpy
from .dataframe_helpers import dataframe_shuffle

logger = getLogger("pandas-streaming")


[docs] class ImbalancedSplitException(Exception): """ Raised when an imbalanced split is detected. """
[docs] def train_test_split_weights( df, weights=None, test_size=0.25, train_size=None, shuffle=True, fail_imbalanced=0.05, random_state=None, ): """ Splits a database in train/test given, every row can have a different weight. :param df: :class:`pandas.DataFrame` or see :class:`StreamingDataFrame <pandas_streaming.df.dataframe.StreamingDataFrame>` :param weights: None or weights or weights column name :param test_size: ratio for the test partition (if *train_size* is not specified) :param train_size: ratio for the train partition :param shuffle: shuffles before the split :param fail_imbalanced: raises an exception if relative weights difference is higher than this value :param random_state: seed for random generators :return: train and test :class:`pandas.DataFrame` If the dataframe is not shuffled first, the function will produce two datasets which are unlikely to be randomized as the function tries to keep equal weights among both paths without using randomness. """ if hasattr(df, "iter_creation"): raise NotImplementedError( # pragma: no cover "Not implemented yet for StreamingDataFrame." ) if isinstance(df, numpy.ndarray): raise NotImplementedError( # pragma: no cover "Not implemented on numpy arrays." ) if shuffle: df = dataframe_shuffle(df, random_state=random_state) if weights is None: if test_size == 0 or train_size == 0: raise ValueError( f"test_size={test_size} or train_size={train_size} cannot be null (1)." ) from sklearn.model_selection import train_test_split return train_test_split( df, test_size=test_size, train_size=train_size, random_state=random_state ) if isinstance(weights, pandas.Series): weights = list(weights) elif isinstance(weights, str): weights = list(df[weights]) if len(weights) != df.shape[0]: raise ValueError( "Dimension mismatch between weights and dataframe " # noqa: UP030 "{0} != {1}".format(df.shape[0], len(weights)) ) p = (1 - test_size) if test_size else None if train_size is not None: p = train_size test_size = 1 - p if p is None or min(test_size, p) <= 0: raise ValueError( f"test_size={test_size} or train_size={train_size} cannot be null (2)." ) ratio = test_size / p if random_state is None: randint = numpy.random.randint else: state = numpy.random.RandomState(random_state) randint = state.randint balance = 0 train_ids = [] test_ids = [] test_weights = 0 train_weights = 0 for i in range(df.shape[0]): w = weights[i] if balance == 0: h = randint(0, 1) totest = h == 0 else: totest = balance < 0 if totest: test_ids.append(i) balance += w test_weights += w else: train_ids.append(i) balance -= w * ratio train_weights += w * ratio r = abs(train_weights - test_weights) / (1.0 * (train_weights + test_weights)) if r >= fail_imbalanced: raise ImbalancedSplitException( # pragma: no cover "Split is imbalanced: train_weights={0} test_weights={1} r={2}." # noqa: UP030 "".format(train_weights, test_weights, r) ) return df.iloc[train_ids, :], df.iloc[test_ids, :]
[docs] def train_test_connex_split( df, groups, test_size=0.25, train_size=None, stratify=None, hash_size=9, unique_rows=False, shuffle=True, fail_imbalanced=0.05, keep_balance=None, stop_if_bigger=None, return_cnx=False, must_groups=None, random_state=None, verbose=0, ): """ This split is for a specific case where data is linked in many ways. Let's assume we have three ids as we have for online sales: *(product id, user id, card id)*. As we may need to compute aggregated features, we need every id not to be present in both train and test set. The function computes the connected components and breaks each of them in two parts for train and test. :param df: :epkg:`pandas:DataFrame` :param groups: columns name for the ids :param test_size: ratio for the test partition (if *train_size* is not specified) :param train_size: ratio for the train partition :param stratify: column holding the stratification :param hash_size: size of the hash to cache information about partition :param unique_rows: ensures that rows are unique :param shuffle: shuffles before the split :param fail_imbalanced: raises an exception if relative weights difference is higher than this value :param stop_if_bigger: (float) stops a connected components from being bigger than this ratio of elements, this should not be used unless a big components emerges, the algorithm stops merging but does not guarantee it returns the best cut, the value should be close to 0 :param keep_balance: (float), if not None, does not merge connected components if their relative sizes are too different, the value should be close to 1 :param return_cnx: returns connected components as a third results :param must_groups: column name for ids which must not be shared by train/test partitions :param random_state: seed for random generator :param verbose: verbosity (uses logging) :return: Two see :class:`StreamingDataFrame <pandas_streaming.df.dataframe.StreamingDataFrame>`, one for train, one for test. The list of ids must hold in memory. There is no streaming implementation for the ids. .. exref:: :title: Splits a dataframe, keep ids in separate partitions :tag: dataframe In some data science problems, rows are not independant and share common value, most of the time ids. In some specific case, multiple ids from different columns are connected and must appear in the same partition. Testing that each id column is evenly split and do not appear in both sets in not enough. Connected components are needed. .. runpython:: :showcode: from pandas import DataFrame from pandas_streaming.df import train_test_connex_split df = DataFrame([dict(user="UA", prod="PAA", card="C1"), dict(user="UA", prod="PB", card="C1"), dict(user="UB", prod="PC", card="C2"), dict(user="UB", prod="PD", card="C2"), dict(user="UC", prod="PAA", card="C3"), dict(user="UC", prod="PF", card="C4"), dict(user="UD", prod="PG", card="C5"), ]) train, test = train_test_connex_split( df, test_size=0.5, groups=['user', 'prod', 'card'], fail_imbalanced=0.6) print(train) print(test) If *return_cnx* is True, the third results contains: * connected components for each id * the dataframe with connected components as a new column .. runpython:: :showcode: from pandas import DataFrame from pandas_streaming.df import train_test_connex_split df = DataFrame([dict(user="UA", prod="PAA", card="C1"), dict(user="UA", prod="PB", card="C1"), dict(user="UB", prod="PC", card="C2"), dict(user="UB", prod="PD", card="C2"), dict(user="UC", prod="PAA", card="C3"), dict(user="UC", prod="PF", card="C4"), dict(user="UD", prod="PG", card="C5"), ]) train, test, cnx = train_test_connex_split( df, test_size=0.5, groups=['user', 'prod', 'card'], fail_imbalanced=0.6, return_cnx=True) print(cnx[0]) print(cnx[1]) """ if stratify is not None: raise NotImplementedError( # pragma: no cover "Option stratify is not implemented." ) if groups is None or len(groups) == 0: raise ValueError( # pragma: no cover "groups is empty. Use regular train_test_split." ) if hasattr(df, "iter_creation"): raise NotImplementedError( # pragma: no cover "Not implemented yet for StreamingDataFrame." ) if isinstance(df, numpy.ndarray): raise NotImplementedError( # pragma: no cover "Not implemented on numpy arrays." ) if shuffle: df = dataframe_shuffle(df, random_state=random_state) dfids = df[groups].copy() if must_groups is not None: dfids_must = df[must_groups].copy() name = "connex" while name in dfids.columns: name += "_" one = "weight" while one in dfids.columns: one += "_" # Connected components. elements = list(range(dfids.shape[0])) counts_cnx = {i: {i} for i in elements} connex = {} avoids_merge = {} def do_connex_components(dfrows, local_groups, kb, sib): "run connected components algorithms" itern = 0 modif = 1 while modif > 0 and itern < len(elements): if df.shape[0] > 10000: logger.info( "[train_test_connex_split] iteration=%d-#nb connect=%d - " "modif=%s", itern, len(set(elements)), modif, ) modif = 0 itern += 1 for i, row in enumerate(dfrows.itertuples(index=False, name=None)): vals = [ val for val in zip(local_groups, row) if not isinstance(val[1], float) or not numpy.isnan(val[1]) ] c = elements[i] for val in vals: if val not in connex: connex[val] = c modif += 1 set_c = set(connex[val] for val in vals) set_c.add(c) new_c = min(set_c) add_pair_c = [] for c in set_c: if c == new_c or (new_c, c) in avoids_merge: continue if kb is not None: maxi = min(len(counts_cnx[new_c]), len(counts_cnx[c])) if maxi > 5: diff = len(counts_cnx[new_c]) + len(counts_cnx[c]) - maxi r = diff / float(maxi) if r > kb: if verbose: # pragma: no cover logger.info( "[train_test_connex_split] balance " "r=%1.4f>%1.2f, #[%d]=%d, #[%d]=%d", r, kb, new_c, len(counts_cnx[new_c]), c, len(counts_cnx[c]), ) continue if sib is not None: r = (len(counts_cnx[new_c]) + len(counts_cnx[c])) / float( len(elements) ) if r > sib: logger.info( "[train_test_connex_split] " "no merge r=%1.4f>%1.2f, #[%d]=%d, #[%d]=%d", r, sib, new_c, len(counts_cnx[new_c]), c, len(counts_cnx[c]), ) avoids_merge[new_c, c] = i continue add_pair_c.append(c) if len(add_pair_c) > 0: for c in add_pair_c: modif += len(counts_cnx[c]) for ii in counts_cnx[c]: elements[ii] = new_c counts_cnx[new_c] = counts_cnx[new_c].union(counts_cnx[c]) counts_cnx[c] = set() keys = list(vals) for val in keys: if connex[val] == c: connex[val] = new_c modif += 1 if must_groups: do_connex_components(dfids_must, must_groups, None, None) do_connex_components(dfids, groups, keep_balance, stop_if_bigger) # final dfids[name] = elements dfids[one] = 1 grsum = dfids[[name, one]].groupby(name, as_index=False).sum() for g in groups: logger.info("[train_test_connex_split] #nb in '%d':", len(set(dfids[g]))) logger.info( "[train_test_connex_split] #connex %d/%d", grsum.shape[0], dfids.shape[0] ) if grsum.shape[0] <= 1: raise ValueError( # pragma: no cover "Every element is in the same connected components." ) # Statistics: top connected components if verbose: # Global statistics counts = Counter(elements) cl = [(v, k) for k, v in counts.items()] cum = 0 maxc = None logger.info( "[train_test_connex_split] number of connected components: %d", len(set(elements)), ) for i, (v, k) in enumerate(sorted(cl, reverse=True)): if i == 0: maxc = k, v if i >= 10: break cum += v logger.info( "[train_test_connex_split] c=%s #elements=%s cumulated=%d/%d", k, v, cum, len(elements), ) # Most important component logger.info( "[train_test_connex_split] first row of the biggest component %d", maxc ) tdf = dfids[dfids[name] == maxc[0]] logger.info("[train_test_connex_split] % s", tdf.head(n=10)) # Splits. train, test = train_test_split_weights( grsum, weights=one, test_size=test_size, train_size=train_size, shuffle=shuffle, fail_imbalanced=fail_imbalanced, random_state=random_state, ) train.drop(one, inplace=True, axis=1) test.drop(one, inplace=True, axis=1) # We compute the final dataframe. def double_merge(d): "merge twice" merge1 = dfids.merge(d, left_on=name, right_on=name) merge2 = df.merge(merge1, left_on=groups, right_on=groups) return merge2 train_f = double_merge(train) test_f = double_merge(test) if return_cnx: return train_f, test_f, (connex, dfids) else: return train_f, test_f
[docs] def train_test_apart_stratify( df: pandas.DataFrame, group, test_size: Optional[float] = 0.25, train_size: Optional[float] = None, stratify: Optional[str] = None, force: bool = False, random_state: Optional[int] = None, sorted_indices: bool = False, ) -> Tuple["StreamingDataFrame", "StreamingDataFrame"]: # noqa: F821 """ This split is for a specific case where data is linked in one way. Let's assume we have two ids as we have for online sales: *(product id, category id)*. A product can have multiple categories. We need to have distinct products on train and test but common categories on both sides. :param df: :epkg:`pandas:DataFrame` :param group: columns name for the ids :param test_size: ratio for the test partition (if *train_size* is not specified) :param train_size: ratio for the train partition :param stratify: column holding the stratification :param force: if True, tries to get at least one example on the test side for each value of the column *stratify* :param random_state: seed for random generators :param sorted_indices: sort index first, see issue `41 <https://github.com/sdpython/pandas-streaming/issues/41>` :return: Two see :class:`StreamingDataFrame <pandas_streaming.df.dataframe.StreamingDataFrame>`, one for train, one for test. The list of ids must hold in memory. There is no streaming implementation for the ids. This split was implemented for a case of a multi-label classification. A category (*stratify*) is not exclusive and an observation can be assigned to multiple categories. In that particular case, the method :func:`sklearn.model_selection.train_test_split` can not directly be used. .. runpython:: :showcode: import pandas from pandas_streaming.df import train_test_apart_stratify df = pandas.DataFrame([dict(a=1, b="e"), dict(a=1, b="f"), dict(a=2, b="e"), dict(a=2, b="f")]) train, test = train_test_apart_stratify( df, group="a", stratify="b", test_size=0.5) print(train) print('-----------') print(test) """ if stratify is None: raise ValueError("stratify must be specified.") # pragma: no cover if group is None: raise ValueError("group must be specified.") # pragma: no cover if hasattr(df, "iter_creation"): raise NotImplementedError("Not implemented yet for StreamingDataFrame.") if isinstance(df, numpy.ndarray): raise NotImplementedError("Not implemented on numpy arrays.") p = (1 - test_size) if test_size else None if train_size is not None: p = train_size test_size = 1 - p if p is None or min(test_size, p) <= 0: raise ValueError( # pragma: no cover f"test_size={test_size} or train_size={train_size} cannot be null" ) couples = df[[group, stratify]].itertuples(name=None, index=False) hist = Counter(df[stratify]) sorted_hist = [(v, k) for k, v in hist.items()] sorted_hist.sort() ids = {c: set() for c in hist} for g, s in couples: ids[s].add(g) if random_state is None: permutation = numpy.random.permutation else: state = numpy.random.RandomState(random_state) permutation = state.permutation split = {} for _, k in sorted_hist: indices = sorted(ids[k]) if sorted_indices else ids[k] not_assigned, assigned = [], [] for c in indices: if c in split: assigned.append(c) else: not_assigned.append(c) if len(not_assigned) == 0: continue nb_test = sum(split[c] for c in assigned) expected = min(len(ids[k]), int(test_size * len(ids[k]) + 0.5)) - nb_test if force and expected == 0 and nb_test == 0: nb_train = len(assigned) - nb_test if nb_train > 0 or len(not_assigned) > 1: expected = min(1, len(not_assigned)) if expected > 0: permutation(not_assigned) for e in not_assigned[:expected]: split[e] = 1 for e in not_assigned[expected:]: split[e] = 0 else: for c in not_assigned: split[c] = 0 train_set = set(k for k, v in split.items() if v == 0) test_set = set(k for k, v in split.items() if v == 1) train_df = df[df[group].isin(train_set)] test_df = df[df[group].isin(test_set)] return train_df, test_df