Note
Go to the end to download the full example code.
Steel method forward to guess inputs and dynamic shapes (with Tiny-LLM)¶
Inputs are always dynamic with LLMs that is why dynamic shapes
needs to be specified when a LLM is exported with torch.export.export()
.
Most of the examples on HuggingFace use method
transformers.GenerationMixin.generate()
but we only want to
export the model and its method forward
.
That example shows to guess the inputs of this method even though the model
is executed through meth generate
.
We focus on the model arnir0/Tiny-LLM. To avoid downloading any weights, we write a function creating a random model based on the same architecture.
Steel the forward method¶
The first step is to guess the dummy inputs. Let’s use the true model for that. We use the dummy example from the model page.
import copy
import pprint
import torch
import transformers
from onnx_diagnostic import doc
from onnx_diagnostic.helpers import string_type
from onnx_diagnostic.helpers.torch_helper import steal_forward
from onnx_diagnostic.torch_models.llms import get_tiny_llm
MODEL_NAME = "arnir0/Tiny-LLM"
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL_NAME)
model = transformers.AutoModelForCausalLM.from_pretrained(MODEL_NAME)
We rewrite the forward method to print the cache dimension.
def _forward_(*args, _f=None, **kwargs):
assert _f is not None
if not hasattr(torch.compiler, "is_exporting") or not torch.compiler.is_exporting():
# torch.compiler.is_exporting requires torch>=2.7
print("<-", string_type((args, kwargs), with_shape=True, with_min_max=True))
res = _f(*args, **kwargs)
if not hasattr(torch.compiler, "is_exporting") or not torch.compiler.is_exporting():
print("->", string_type(res, with_shape=True, with_min_max=True))
return res
keep_model_forward = model.forward
model.forward = lambda *args, _f=keep_model_forward, **kwargs: _forward_(
*args, _f=_f, **kwargs
)
Let’s run the model.
prompt = "Continue: it rains..."
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(
inputs, max_length=50, temperature=1, top_k=50, top_p=0.95, do_sample=True
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("-- prompt", prompt)
print("-- answer", generated_text)
<- ((),dict(cache_position:T7s8[0,7:A3.5],past_key_values:DynamicCache(key_cache=#0[], value_cache=#0[]),input_ids:T7s1x8[1,29901:A6305.375],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x8x32000[-15.516718864440918,15.75765609741211:A-3.381915190983544],past_key_values:DynamicCache(key_cache=#1[T1s1x1x8x96[-5.490959167480469,6.226877689361572:A-0.11321351693110653]], value_cache=#1[T1s1x1x8x96[-0.6787744760513306,0.49568021297454834:A0.007227749521139988]]))
<- ((),dict(cache_position:T7s1[8,8:A8.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x8x96[-5.490959167480469,6.226877689361572:A-0.11321351693110653]], value_cache=#1[T1s1x1x8x96[-0.6787744760513306,0.49568021297454834:A0.007227749521139988]]),input_ids:T7s1x1[2866,2866:A2866.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-12.076018333435059,16.944217681884766:A-2.592398094831733],past_key_values:DynamicCache(key_cache=#1[T1s1x1x9x96[-5.490959167480469,6.226877689361572:A-0.1302779765439347]], value_cache=#1[T1s1x1x9x96[-0.6787744760513306,0.49568021297454834:A0.007744434695858352]]))
<- ((),dict(cache_position:T7s1[9,9:A9.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x9x96[-5.490959167480469,6.226877689361572:A-0.1302779765439347]], value_cache=#1[T1s1x1x9x96[-0.6787744760513306,0.49568021297454834:A0.007744434695858352]]),input_ids:T7s1x1[14150,14150:A14150.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.20236587524414,6.324185371398926:A-8.229752516841982],past_key_values:DynamicCache(key_cache=#1[T1s1x1x10x96[-5.490959167480469,6.226877689361572:A-0.1353976684111937]], value_cache=#1[T1s1x1x10x96[-0.6787744760513306,0.49568021297454834:A0.008736979494627425]]))
<- ((),dict(cache_position:T7s1[10,10:A10.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x10x96[-5.490959167480469,6.226877689361572:A-0.1353976684111937]], value_cache=#1[T1s1x1x10x96[-0.6787744760513306,0.49568021297454834:A0.008736979494627425]]),input_ids:T7s1x1[13,13:A13.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-9.766801834106445,9.472546577453613:A-3.835216622609645],past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96[-5.510405540466309,6.323276519775391:A-0.14122593572844352]], value_cache=#1[T1s1x1x11x96[-0.6787744760513306,0.7704185843467712:A0.010512653572332607]]))
<- ((),dict(cache_position:T7s1[11,11:A11.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96[-5.510405540466309,6.323276519775391:A-0.14122593572844352]], value_cache=#1[T1s1x1x11x96[-0.6787744760513306,0.7704185843467712:A0.010512653572332607]]),input_ids:T7s1x1[29896,29896:A29896.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-17.130678176879883,6.499423027038574:A-9.773156030296349],past_key_values:DynamicCache(key_cache=#1[T1s1x1x12x96[-5.56224250793457,7.80775785446167:A-0.1263863019698369]], value_cache=#1[T1s1x1x12x96[-0.6787744760513306,0.7704185843467712:A0.009432555446222877]]))
<- ((),dict(cache_position:T7s1[12,12:A12.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x12x96[-5.56224250793457,7.80775785446167:A-0.1263863019698369]], value_cache=#1[T1s1x1x12x96[-0.6787744760513306,0.7704185843467712:A0.009432555446222877]]),input_ids:T7s1x1[29955,29955:A29955.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.34309196472168,3.843973398208618:A-10.386367086275015],past_key_values:DynamicCache(key_cache=#1[T1s1x1x13x96[-5.56224250793457,7.80775785446167:A-0.10667757329018712]], value_cache=#1[T1s1x1x13x96[-0.6787744760513306,0.7704185843467712:A0.007383622652865504]]))
<- ((),dict(cache_position:T7s1[13,13:A13.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x13x96[-5.56224250793457,7.80775785446167:A-0.10667757329018712]], value_cache=#1[T1s1x1x13x96[-0.6787744760513306,0.7704185843467712:A0.007383622652865504]]),input_ids:T7s1x1[29906,29906:A29906.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.532150268554688,3.666583776473999:A-11.269741500732488],past_key_values:DynamicCache(key_cache=#1[T1s1x1x14x96[-5.56224250793457,7.80775785446167:A-0.10199566604803424]], value_cache=#1[T1s1x1x14x96[-0.6787744760513306,0.7704185843467712:A0.0064541851418847985]]))
<- ((),dict(cache_position:T7s1[14,14:A14.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x14x96[-5.56224250793457,7.80775785446167:A-0.10199566604803424]], value_cache=#1[T1s1x1x14x96[-0.6787744760513306,0.7704185843467712:A0.0064541851418847985]]),input_ids:T7s1x1[29955,29955:A29955.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.748641967773438,2.377869129180908:A-10.9063553344775],past_key_values:DynamicCache(key_cache=#1[T1s1x1x15x96[-6.514342308044434,7.80775785446167:A-0.1067288919787744]], value_cache=#1[T1s1x1x15x96[-0.6787744760513306,0.7704185843467712:A0.0048770014079309474]]))
<- ((),dict(cache_position:T7s1[15,15:A15.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x15x96[-6.514342308044434,7.80775785446167:A-0.1067288919787744]], value_cache=#1[T1s1x1x15x96[-0.6787744760513306,0.7704185843467712:A0.0048770014079309474]]),input_ids:T7s1x1[29889,29889:A29889.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-15.992144584655762,3.1707417964935303:A-9.290915607287083],past_key_values:DynamicCache(key_cache=#1[T1s1x1x16x96[-6.514342308044434,7.80775785446167:A-0.11071639796887212]], value_cache=#1[T1s1x1x16x96[-0.6787744760513306,0.7704185843467712:A0.005295240012164489]]))
<- ((),dict(cache_position:T7s1[16,16:A16.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x16x96[-6.514342308044434,7.80775785446167:A-0.11071639796887212]], value_cache=#1[T1s1x1x16x96[-0.6787744760513306,0.7704185843467712:A0.005295240012164489]]),input_ids:T7s1x1[1346,1346:A1346.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-12.513595581054688,5.998507499694824:A-6.863655102951452],past_key_values:DynamicCache(key_cache=#1[T1s1x1x17x96[-6.514342308044434,7.80775785446167:A-0.11430105171986689]], value_cache=#1[T1s1x1x17x96[-0.6787744760513306,0.7704185843467712:A0.006192031966935139]]))
<- ((),dict(cache_position:T7s1[17,17:A17.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x17x96[-6.514342308044434,7.80775785446167:A-0.11430105171986689]], value_cache=#1[T1s1x1x17x96[-0.6787744760513306,0.7704185843467712:A0.006192031966935139]]),input_ids:T7s1x1[11008,11008:A11008.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-16.149032592773438,6.592485427856445:A-8.162168410183629],past_key_values:DynamicCache(key_cache=#1[T1s1x1x18x96[-6.514342308044434,7.80775785446167:A-0.11271050087944551]], value_cache=#1[T1s1x1x18x96[-0.6787744760513306,0.7704185843467712:A0.006270507420552989]]))
<- ((),dict(cache_position:T7s1[18,18:A18.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x18x96[-6.514342308044434,7.80775785446167:A-0.11271050087944551]], value_cache=#1[T1s1x1x18x96[-0.6787744760513306,0.7704185843467712:A0.006270507420552989]]),input_ids:T7s1x1[338,338:A338.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-17.68008041381836,4.83764123916626:A-8.521328096436337],past_key_values:DynamicCache(key_cache=#1[T1s1x1x19x96[-6.514342308044434,7.80775785446167:A-0.1070911308130522]], value_cache=#1[T1s1x1x19x96[-0.6787744760513306,0.7704185843467712:A0.006120377149679706]]))
<- ((),dict(cache_position:T7s1[19,19:A19.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x19x96[-6.514342308044434,7.80775785446167:A-0.1070911308130522]], value_cache=#1[T1s1x1x19x96[-0.6787744760513306,0.7704185843467712:A0.006120377149679706]]),input_ids:T7s1x1[278,278:A278.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-19.417095184326172,1.8751906156539917:A-8.957327721646056],past_key_values:DynamicCache(key_cache=#1[T1s1x1x20x96[-6.514342308044434,7.80775785446167:A-0.1065764879203319]], value_cache=#1[T1s1x1x20x96[-0.6787744760513306,0.7704185843467712:A0.006497487897217979]]))
<- ((),dict(cache_position:T7s1[20,20:A20.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x20x96[-6.514342308044434,7.80775785446167:A-0.1065764879203319]], value_cache=#1[T1s1x1x20x96[-0.6787744760513306,0.7704185843467712:A0.006497487897217979]]),input_ids:T7s1x1[6407,6407:A6407.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-15.863143920898438,4.246685981750488:A-8.345390231630299],past_key_values:DynamicCache(key_cache=#1[T1s1x1x21x96[-6.514342308044434,7.80775785446167:A-0.10707745971018402]], value_cache=#1[T1s1x1x21x96[-0.6787744760513306,0.7704185843467712:A0.006420572361259965]]))
<- ((),dict(cache_position:T7s1[21,21:A21.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x21x96[-6.514342308044434,7.80775785446167:A-0.10707745971018402]], value_cache=#1[T1s1x1x21x96[-0.6787744760513306,0.7704185843467712:A0.006420572361259965]]),input_ids:T7s1x1[23178,23178:A23178.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-14.924324989318848,9.368085861206055:A-5.842367285697721],past_key_values:DynamicCache(key_cache=#1[T1s1x1x22x96[-6.514342308044434,7.80775785446167:A-0.10598940944807757]], value_cache=#1[T1s1x1x22x96[-0.6787744760513306,0.7704185843467712:A0.006922851670224466]]))
<- ((),dict(cache_position:T7s1[22,22:A22.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x22x96[-6.514342308044434,7.80775785446167:A-0.10598940944807757]], value_cache=#1[T1s1x1x22x96[-0.6787744760513306,0.7704185843467712:A0.006922851670224466]]),input_ids:T7s1x1[304,304:A304.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-14.325243949890137,6.519316673278809:A-6.48442860307591],past_key_values:DynamicCache(key_cache=#1[T1s1x1x23x96[-6.736118793487549,7.80775785446167:A-0.10517701237820776]], value_cache=#1[T1s1x1x23x96[-0.6787744760513306,0.7704185843467712:A0.007360825890386416]]))
<- ((),dict(cache_position:T7s1[23,23:A23.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x23x96[-6.736118793487549,7.80775785446167:A-0.10517701237820776]], value_cache=#1[T1s1x1x23x96[-0.6787744760513306,0.7704185843467712:A0.007360825890386416]]),input_ids:T7s1x1[4803,4803:A4803.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-16.578031539916992,4.424250602722168:A-8.651429952671053],past_key_values:DynamicCache(key_cache=#1[T1s1x1x24x96[-6.736118793487549,7.80775785446167:A-0.10474299553258486]], value_cache=#1[T1s1x1x24x96[-0.6787744760513306,0.7704185843467712:A0.007589129441580806]]))
<- ((),dict(cache_position:T7s1[24,24:A24.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x24x96[-6.736118793487549,7.80775785446167:A-0.10474299553258486]], value_cache=#1[T1s1x1x24x96[-0.6787744760513306,0.7704185843467712:A0.007589129441580806]]),input_ids:T7s1x1[3575,3575:A3575.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-14.941386222839355,5.769210338592529:A-7.401098891170696],past_key_values:DynamicCache(key_cache=#1[T1s1x1x25x96[-6.736118793487549,7.80775785446167:A-0.10711594390348182]], value_cache=#1[T1s1x1x25x96[-0.6787744760513306,0.7704185843467712:A0.00848312252195683]]))
<- ((),dict(cache_position:T7s1[25,25:A25.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x25x96[-6.736118793487549,7.80775785446167:A-0.10711594390348182]], value_cache=#1[T1s1x1x25x96[-0.6787744760513306,0.7704185843467712:A0.00848312252195683]]),input_ids:T7s1x1[4634,4634:A4634.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-15.953036308288574,8.907347679138184:A-7.339830758744385],past_key_values:DynamicCache(key_cache=#1[T1s1x1x26x96[-6.736118793487549,7.80775785446167:A-0.10462525407209074]], value_cache=#1[T1s1x1x26x96[-0.6787744760513306,0.7704185843467712:A0.008167866171129972]]))
<- ((),dict(cache_position:T7s1[26,26:A26.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x26x96[-6.736118793487549,7.80775785446167:A-0.10462525407209074]], value_cache=#1[T1s1x1x26x96[-0.6787744760513306,0.7704185843467712:A0.008167866171129972]]),input_ids:T7s1x1[29908,29908:A29908.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-16.06087875366211,7.677635192871094:A-8.212195269609335],past_key_values:DynamicCache(key_cache=#1[T1s1x1x27x96[-6.736118793487549,7.80775785446167:A-0.1044719296038283]], value_cache=#1[T1s1x1x27x96[-0.7138619422912598,0.7704185843467712:A0.0070055666498415065]]))
<- ((),dict(cache_position:T7s1[27,27:A27.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x27x96[-6.736118793487549,7.80775785446167:A-0.1044719296038283]], value_cache=#1[T1s1x1x27x96[-0.7138619422912598,0.7704185843467712:A0.0070055666498415065]]),input_ids:T7s1x1[13,13:A13.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-8.597193717956543,11.263106346130371:A-2.7108958317828367],past_key_values:DynamicCache(key_cache=#1[T1s1x1x28x96[-6.736118793487549,7.80775785446167:A-0.10238736237287023]], value_cache=#1[T1s1x1x28x96[-0.7138619422912598,0.7704185843467712:A0.007764989067682325]]))
<- ((),dict(cache_position:T7s1[28,28:A28.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x28x96[-6.736118793487549,7.80775785446167:A-0.10238736237287023]], value_cache=#1[T1s1x1x28x96[-0.7138619422912598,0.7704185843467712:A0.007764989067682325]]),input_ids:T7s1x1[29906,29906:A29906.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.96987533569336,6.3426313400268555:A-9.897809827283956],past_key_values:DynamicCache(key_cache=#1[T1s1x1x29x96[-6.736118793487549,7.80775785446167:A-0.10419577948351648]], value_cache=#1[T1s1x1x29x96[-0.7138619422912598,0.7704185843467712:A0.0073031445308358875]]))
<- ((),dict(cache_position:T7s1[29,29:A29.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x29x96[-6.736118793487549,7.80775785446167:A-0.10419577948351648]], value_cache=#1[T1s1x1x29x96[-0.7138619422912598,0.7704185843467712:A0.0073031445308358875]]),input_ids:T7s1x1[29889,29889:A29889.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.66803741455078,3.4406561851501465:A-9.641325709228637],past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96[-6.736118793487549,7.80775785446167:A-0.09744727589131799]], value_cache=#1[T1s1x1x30x96[-0.7138619422912598,0.7704185843467712:A0.007445333682330278]]))
<- ((),dict(cache_position:T7s1[30,30:A30.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96[-6.736118793487549,7.80775785446167:A-0.09744727589131799]], value_cache=#1[T1s1x1x30x96[-0.7138619422912598,0.7704185843467712:A0.007445333682330278]]),input_ids:T7s1x1[3617,3617:A3617.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-15.766657829284668,6.086407661437988:A-6.891880532442592],past_key_values:DynamicCache(key_cache=#1[T1s1x1x31x96[-6.736118793487549,7.80775785446167:A-0.09227814455923464]], value_cache=#1[T1s1x1x31x96[-0.7138619422912598,0.7704185843467712:A0.0072815972057567275]]))
<- ((),dict(cache_position:T7s1[31,31:A31.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x31x96[-6.736118793487549,7.80775785446167:A-0.09227814455923464]], value_cache=#1[T1s1x1x31x96[-0.7138619422912598,0.7704185843467712:A0.0072815972057567275]]),input_ids:T7s1x1[7535,7535:A7535.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-17.793766021728516,6.4512834548950195:A-7.496981759910006],past_key_values:DynamicCache(key_cache=#1[T1s1x1x32x96[-6.736118793487549,7.80775785446167:A-0.09067019900157902]], value_cache=#1[T1s1x1x32x96[-0.7138619422912598,0.7704185843467712:A0.007518240814187986]]))
<- ((),dict(cache_position:T7s1[32,32:A32.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x32x96[-6.736118793487549,7.80775785446167:A-0.09067019900157902]], value_cache=#1[T1s1x1x32x96[-0.7138619422912598,0.7704185843467712:A0.007518240814187986]]),input_ids:T7s1x1[278,278:A278.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.929738998413086,5.662778377532959:A-8.433525333310477],past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96[-6.736118793487549,7.80775785446167:A-0.08647315130208036]], value_cache=#1[T1s1x1x33x96[-0.7138619422912598,0.7704185843467712:A0.007704433277407901]]))
<- ((),dict(cache_position:T7s1[33,33:A33.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96[-6.736118793487549,7.80775785446167:A-0.08647315130208036]], value_cache=#1[T1s1x1x33x96[-0.7138619422912598,0.7704185843467712:A0.007704433277407901]]),input_ids:T7s1x1[2743,2743:A2743.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.49707794189453,5.1465325355529785:A-9.808384840307292],past_key_values:DynamicCache(key_cache=#1[T1s1x1x34x96[-6.736118793487549,7.80775785446167:A-0.08382221280315243]], value_cache=#1[T1s1x1x34x96[-0.7138619422912598,0.7704185843467712:A0.007704160918895771]]))
<- ((),dict(cache_position:T7s1[34,34:A34.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x34x96[-6.736118793487549,7.80775785446167:A-0.08382221280315243]], value_cache=#1[T1s1x1x34x96[-0.7138619422912598,0.7704185843467712:A0.007704160918895771]]),input_ids:T7s1x1[982,982:A982.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-19.50584602355957,8.170029640197754:A-10.122835167907178],past_key_values:DynamicCache(key_cache=#1[T1s1x1x35x96[-6.736118793487549,7.80775785446167:A-0.08074572847912177]], value_cache=#1[T1s1x1x35x96[-0.7138619422912598,0.7704185843467712:A0.00831381521998732]]))
<- ((),dict(cache_position:T7s1[35,35:A35.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x35x96[-6.736118793487549,7.80775785446167:A-0.08074572847912177]], value_cache=#1[T1s1x1x35x96[-0.7138619422912598,0.7704185843467712:A0.00831381521998732]]),input_ids:T7s1x1[29892,29892:A29892.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-15.600412368774414,7.457620620727539:A-6.493258041781607],past_key_values:DynamicCache(key_cache=#1[T1s1x1x36x96[-6.736118793487549,7.80775785446167:A-0.07793717438687088]], value_cache=#1[T1s1x1x36x96[-0.7138619422912598,0.7704185843467712:A0.008467665720095956]]))
<- ((),dict(cache_position:T7s1[36,36:A36.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x36x96[-6.736118793487549,7.80775785446167:A-0.07793717438687088]], value_cache=#1[T1s1x1x36x96[-0.7138619422912598,0.7704185843467712:A0.008467665720095956]]),input_ids:T7s1x1[3692,3692:A3692.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-18.347639083862305,9.92923641204834:A-7.448127461537253],past_key_values:DynamicCache(key_cache=#1[T1s1x1x37x96[-6.736118793487549,7.80775785446167:A-0.07207132491958537]], value_cache=#1[T1s1x1x37x96[-0.7138619422912598,0.7704185843467712:A0.008781119560427288]]))
<- ((),dict(cache_position:T7s1[37,37:A37.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x37x96[-6.736118793487549,7.80775785446167:A-0.07207132491958537]], value_cache=#1[T1s1x1x37x96[-0.7138619422912598,0.7704185843467712:A0.008781119560427288]]),input_ids:T7s1x1[297,297:A297.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-16.862762451171875,7.377256393432617:A-7.443456991467857],past_key_values:DynamicCache(key_cache=#1[T1s1x1x38x96[-6.736118793487549,7.80775785446167:A-0.06766095194504024]], value_cache=#1[T1s1x1x38x96[-0.7138619422912598,0.7704185843467712:A0.008785818313598563]]))
<- ((),dict(cache_position:T7s1[38,38:A38.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x38x96[-6.736118793487549,7.80775785446167:A-0.06766095194504024]], value_cache=#1[T1s1x1x38x96[-0.7138619422912598,0.7704185843467712:A0.008785818313598563]]),input_ids:T7s1x1[4856,4856:A4856.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-13.052538871765137,10.900754928588867:A-5.0423419076236895],past_key_values:DynamicCache(key_cache=#1[T1s1x1x39x96[-6.736118793487549,7.80775785446167:A-0.06517613900807472]], value_cache=#1[T1s1x1x39x96[-0.7138619422912598,0.7704185843467712:A0.00918441853292458]]))
<- ((),dict(cache_position:T7s1[39,39:A39.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x39x96[-6.736118793487549,7.80775785446167:A-0.06517613900807472]], value_cache=#1[T1s1x1x39x96[-0.7138619422912598,0.7704185843467712:A0.00918441853292458]]),input_ids:T7s1x1[15313,15313:A15313.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-12.375218391418457,19.666357040405273:A-0.564182700350415],past_key_values:DynamicCache(key_cache=#1[T1s1x1x40x96[-6.736118793487549,7.80775785446167:A-0.06354604363198936]], value_cache=#1[T1s1x1x40x96[-0.7138619422912598,0.7704185843467712:A0.00848009937929343]]))
<- ((),dict(cache_position:T7s1[40,40:A40.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x40x96[-6.736118793487549,7.80775785446167:A-0.06354604363198936]], value_cache=#1[T1s1x1x40x96[-0.7138619422912598,0.7704185843467712:A0.00848009937929343]]),input_ids:T7s1x1[1144,1144:A1144.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-12.423444747924805,13.019462585449219:A-4.359929949273588],past_key_values:DynamicCache(key_cache=#1[T1s1x1x41x96[-6.736118793487549,7.80775785446167:A-0.0598409421267783]], value_cache=#1[T1s1x1x41x96[-0.7138619422912598,0.7704185843467712:A0.008237699777606114]]))
<- ((),dict(cache_position:T7s1[41,41:A41.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x41x96[-6.736118793487549,7.80775785446167:A-0.0598409421267783]], value_cache=#1[T1s1x1x41x96[-0.7138619422912598,0.7704185843467712:A0.008237699777606114]]),input_ids:T7s1x1[1048,1048:A1048.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-17.85638999938965,7.006597518920898:A-7.712441322462167],past_key_values:DynamicCache(key_cache=#1[T1s1x1x42x96[-6.736118793487549,7.80775785446167:A-0.05822318260551482]], value_cache=#1[T1s1x1x42x96[-0.7138619422912598,0.7704185843467712:A0.008019101587211797]]))
<- ((),dict(cache_position:T7s1[42,42:A42.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x42x96[-6.736118793487549,7.80775785446167:A-0.05822318260551482]], value_cache=#1[T1s1x1x42x96[-0.7138619422912598,0.7704185843467712:A0.008019101587211797]]),input_ids:T7s1x1[4856,4856:A4856.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-14.272891998291016,11.699682235717773:A-5.122771466542501],past_key_values:DynamicCache(key_cache=#1[T1s1x1x43x96[-6.736118793487549,7.80775785446167:A-0.05636586276512023]], value_cache=#1[T1s1x1x43x96[-0.7138619422912598,0.7704185843467712:A0.00839845333791183]]))
<- ((),dict(cache_position:T7s1[43,43:A43.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x43x96[-6.736118793487549,7.80775785446167:A-0.05636586276512023]], value_cache=#1[T1s1x1x43x96[-0.7138619422912598,0.7704185843467712:A0.00839845333791183]]),input_ids:T7s1x1[1058,1058:A1058.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-13.048810958862305,11.082671165466309:A-4.1979296498598995],past_key_values:DynamicCache(key_cache=#1[T1s1x1x44x96[-6.736118793487549,7.80775785446167:A-0.05389009520017267]], value_cache=#1[T1s1x1x44x96[-0.7138619422912598,0.7704185843467712:A0.008558822813576873]]))
<- ((),dict(cache_position:T7s1[44,44:A44.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x44x96[-6.736118793487549,7.80775785446167:A-0.05389009520017267]], value_cache=#1[T1s1x1x44x96[-0.7138619422912598,0.7704185843467712:A0.008558822813576873]]),input_ids:T7s1x1[366,366:A366.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-13.942654609680176,11.131608963012695:A-4.844878984155599],past_key_values:DynamicCache(key_cache=#1[T1s1x1x45x96[-6.736118793487549,7.80775785446167:A-0.05387379795213713]], value_cache=#1[T1s1x1x45x96[-0.7138619422912598,0.7704185843467712:A0.008907078204137414]]))
<- ((),dict(cache_position:T7s1[45,45:A45.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x45x96[-6.736118793487549,7.80775785446167:A-0.05387379795213713]], value_cache=#1[T1s1x1x45x96[-0.7138619422912598,0.7704185843467712:A0.008907078204137414]]),input_ids:T7s1x1[470,470:A470.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-15.920233726501465,10.317113876342773:A-5.626348454394377],past_key_values:DynamicCache(key_cache=#1[T1s1x1x46x96[-6.736118793487549,7.80775785446167:A-0.053487907945173385]], value_cache=#1[T1s1x1x46x96[-0.7138619422912598,0.7704185843467712:A0.008658576126735816]]))
<- ((),dict(cache_position:T7s1[46,46:A46.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x46x96[-6.736118793487549,7.80775785446167:A-0.053487907945173385]], value_cache=#1[T1s1x1x46x96[-0.7138619422912598,0.7704185843467712:A0.008658576126735816]]),input_ids:T7s1x1[4856,4856:A4856.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-14.120901107788086,12.107810974121094:A-4.978954564803047],past_key_values:DynamicCache(key_cache=#1[T1s1x1x47x96[-6.736118793487549,7.80775785446167:A-0.051776735347997836]], value_cache=#1[T1s1x1x47x96[-0.7138619422912598,0.7704185843467712:A0.008992036780790653]]))
<- ((),dict(cache_position:T7s1[47,47:A47.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x47x96[-6.736118793487549,7.80775785446167:A-0.051776735347997836]], value_cache=#1[T1s1x1x47x96[-0.7138619422912598,0.7704185843467712:A0.008992036780790653]]),input_ids:T7s1x1[304,304:A304.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-16.174392700195312,8.619673728942871:A-6.25002147730859],past_key_values:DynamicCache(key_cache=#1[T1s1x1x48x96[-6.736118793487549,7.80775785446167:A-0.05104604224207934]], value_cache=#1[T1s1x1x48x96[-0.7138619422912598,0.7704185843467712:A0.009158791404814792]]))
<- ((),dict(cache_position:T7s1[48,48:A48.0],past_key_values:DynamicCache(key_cache=#1[T1s1x1x48x96[-6.736118793487549,7.80775785446167:A-0.05104604224207934]], value_cache=#1[T1s1x1x48x96[-0.7138619422912598,0.7704185843467712:A0.009158791404814792]]),input_ids:T7s1x1[4459,4459:A4459.0],inputs_embeds:None,use_cache:bool=True,return_dict:bool=True))
-> CausalLMOutputWithPast(logits:T1s1x1x32000[-15.924087524414062,8.78065013885498:A-5.516755177611951],past_key_values:DynamicCache(key_cache=#1[T1s1x1x49x96[-6.736118793487549,7.80775785446167:A-0.049849658982541574]], value_cache=#1[T1s1x1x49x96[-0.7138619422912598,0.7704185843467712:A0.008960381900185919]]))
-- prompt Continue: it rains...
-- answer Continue: it rains... Continue
1727. “Why is the Best Places to Use Your Life"
2. Get yourself the wrong way, whether in someone complains about someone who you or someone to feel their
Let’s restore the forward as it was.
model.forward = keep_model_forward
Another syntax with onnx_diagnostic.helpers.torch_helper.steal_forward()
.
with steal_forward(model):
model.generate(inputs, max_length=50, temperature=1, top_k=50, top_p=0.95, do_sample=True)
+ -- stolen forward for class LlamaForCausalLM -- iteration 0
<- args=() --- kwargs=dict(cache_position:T7s8,past_key_values:DynamicCache(key_cache=#0[], value_cache=#0[]),input_ids:T7s1x8,inputs_embeds:None,use_cache:bool,return_dict:bool)
-> CausalLMOutputWithPast(logits:T1s1x8x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x8x96], value_cache=#1[T1s1x1x8x96]))
-.
Untrained model¶
This part can skipped if you are only interested in exporting the original model. It is useful to create a unit test to ensure a specific architecture can be exported despite the many changes brought to torch or transformers.
Let’s create an untrained model using the config file provided
config.json
to create an untrained model:
onnx_diagnostic.torch_models.llms.get_tiny_llm()
.
Then let’s use it.
experiment = get_tiny_llm()
untrained_model, inputs, dynamic_shapes = (
experiment["model"],
experiment["inputs"],
experiment["dynamic_shapes"],
)
Before we run it, we make a copy of the inputs as the cache get modified by the execution. Then it is no longer valid associated with the previous input_ids and mask.
print("input type before", string_type(inputs, with_shape=True))
expected_output = untrained_model(**inputs)
print("input type after-", string_type(inputs, with_shape=True))
input type before dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
input type after- dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
The outputs
print("result type", string_type(expected_output, with_shape=True))
result type CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
It works.
ExportedProgram¶
try:
ep = torch.export.export(
untrained_model, (), kwargs=cloned_inputs, dynamic_shapes=dynamic_shapes, strict=False
)
print("It worked:")
print(ep)
except Exception as e:
# To work, it needs at least PRs:
# * https://github.com/huggingface/transformers/pull/36311
# * https://github.com/huggingface/transformers/pull/36652
print("It failed:", e)
It worked:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_model_embed_tokens_weight: "f32[32000, 192]", p_model_layers_0_self_attn_q_proj_weight: "f32[192, 192]", p_model_layers_0_self_attn_k_proj_weight: "f32[96, 192]", p_model_layers_0_self_attn_v_proj_weight: "f32[96, 192]", p_model_layers_0_self_attn_o_proj_weight: "f32[192, 192]", p_model_layers_0_mlp_gate_proj_weight: "f32[1024, 192]", p_model_layers_0_mlp_up_proj_weight: "f32[1024, 192]", p_model_layers_0_mlp_down_proj_weight: "f32[192, 1024]", p_model_layers_0_input_layernorm_weight: "f32[192]", p_model_layers_0_post_attention_layernorm_weight: "f32[192]", p_model_norm_weight: "f32[192]", p_lm_head_weight: "f32[32000, 192]", b_model_rotary_emb_inv_freq: "f32[48]", input_ids: "i64[s41, s2]", attention_mask: "i64[s41, s2 + s67]", position_ids: "i64[s41, s2]", past_key_values_key_cache_0: "f32[s41, 1, s67, 96]", past_key_values_value_cache_0: "f32[s41, 1, s67, 96]"):
#
sym_size_int_22: "Sym(s41)" = torch.ops.aten.sym_size.int(input_ids, 0)
sym_size_int_23: "Sym(s2)" = torch.ops.aten.sym_size.int(input_ids, 1)
sym_size_int_24: "Sym(s67)" = torch.ops.aten.sym_size.int(past_key_values_key_cache_0, 2)
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:190 in forward, code: return F.embedding(
embedding: "f32[s41, s2, 192]" = torch.ops.aten.embedding.default(p_model_embed_tokens_weight, input_ids); p_model_embed_tokens_weight = input_ids = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:542 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
add: "Sym(s2 + s67)" = sym_size_int_24 + sym_size_int_23
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:541 in forward, code: cache_position = torch.arange(
arange: "i64[s2]" = torch.ops.aten.arange.start(sym_size_int_24, add, device = device(type='cpu'), pin_memory = False); sym_size_int_24 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:548 in forward, code: causal_mask = self._update_causal_mask(
full: "f32[s2, s2 + s67]" = torch.ops.aten.full.default([sym_size_int_23, add], -3.4028234663852886e+38, dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
triu: "f32[s2, s2 + s67]" = torch.ops.aten.triu.default(full, 1); full = None
arange_1: "i64[s2 + s67]" = torch.ops.aten.arange.default(add, device = device(type='cpu'), pin_memory = False)
reshape: "i64[s2, 1]" = torch.ops.aten.reshape.default(arange, [-1, 1]); arange = None
gt: "b8[s2, s2 + s67]" = torch.ops.aten.gt.Tensor(arange_1, reshape); arange_1 = reshape = None
mul_: "f32[s2, s2 + s67]" = torch.ops.aten.mul_.Tensor(triu, gt); triu = gt = None
unsqueeze: "f32[1, s2, s2 + s67]" = torch.ops.aten.unsqueeze.default(mul_, 0); mul_ = None
unsqueeze_1: "f32[1, 1, s2, s2 + s67]" = torch.ops.aten.unsqueeze.default(unsqueeze, 1); unsqueeze = None
slice_1: "f32[1, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(unsqueeze_1, 2, 0, 9223372036854775807); unsqueeze_1 = None
slice_2: "f32[1, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_1, 3, 0, 9223372036854775807); slice_1 = None
expand: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.expand.default(slice_2, [sym_size_int_22, 1, -1, -1]); slice_2 = None
clone: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.clone.default(expand); expand = None
slice_3: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone)
slice_4: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_3, 1); slice_3 = None
slice_5: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_4, 2); slice_4 = None
slice_6: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_5, 3, None, add); slice_5 = None
slice_7: "i64[s41, s2 + s67]" = torch.ops.aten.slice.Tensor(attention_mask, 0, 0, 9223372036854775807); attention_mask = None
unsqueeze_2: "i64[s41, 1, s2 + s67]" = torch.ops.aten.unsqueeze.default(slice_7, 1); slice_7 = None
unsqueeze_3: "i64[s41, 1, 1, s2 + s67]" = torch.ops.aten.unsqueeze.default(unsqueeze_2, 2); unsqueeze_2 = None
slice_8: "i64[s41, 1, 1, s2 + s67]" = torch.ops.aten.slice.Tensor(unsqueeze_3, 3, 0, 9223372036854775807); unsqueeze_3 = None
_assert_tensor_metadata_default = torch.ops.aten._assert_tensor_metadata.default(slice_8, dtype = torch.int64, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default = None
to: "i64[s41, 1, 1, s2 + s67]" = torch.ops.aten.to.dtype_layout(slice_8, dtype = torch.int64, layout = torch.strided, device = device(type='cpu')); slice_8 = None
add_2: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.add.Tensor(slice_6, to); slice_6 = to = None
eq_4: "b8[s41, 1, s2, s2 + s67]" = torch.ops.aten.eq.Scalar(add_2, 0); add_2 = None
slice_9: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone)
slice_10: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_9, 1); slice_9 = None
slice_11: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_10, 2); slice_10 = None
slice_12: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_11, 3, None, add); slice_11 = None
masked_fill: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.masked_fill.Scalar(slice_12, eq_4, -3.4028234663852886e+38); slice_12 = eq_4 = None
slice_13: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
slice_14: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_13, 1, 0, 9223372036854775807); slice_13 = None
slice_15: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_14, 2, 0, 9223372036854775807); slice_14 = None
copy_: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.copy_.default(slice_15, masked_fill); slice_15 = masked_fill = copy_ = None
# No stacktrace found for following nodes
submod_3 = self.submod_1
wrap_with_set_grad_enabled = torch.ops.higher_order.wrap_with_set_grad_enabled(False, submod_3, b_model_rotary_emb_inv_freq, sym_size_int_22, position_ids); submod_3 = b_model_rotary_emb_inv_freq = position_ids = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:125 in forward, code: return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
to_6: "f32[s41, s2, 96]" = wrap_with_set_grad_enabled[0]
to_7: "f32[s41, s2, 96]" = wrap_with_set_grad_enabled[1]; wrap_with_set_grad_enabled = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:82 in forward, code: hidden_states = hidden_states.to(torch.float32)
_assert_tensor_metadata_default_8 = torch.ops.aten._assert_tensor_metadata.default(embedding, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_8 = None
to_8: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(embedding, torch.float32); embedding = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:83 in forward, code: variance = hidden_states.pow(2).mean(-1, keepdim=True)
pow_1: "f32[s41, s2, 192]" = torch.ops.aten.pow.Tensor_Scalar(to_8, 2)
mean: "f32[s41, s2, 1]" = torch.ops.aten.mean.dim(pow_1, [-1], True); pow_1 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:84 in forward, code: hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
add_3: "f32[s41, s2, 1]" = torch.ops.aten.add.Tensor(mean, 1e-05); mean = None
rsqrt: "f32[s41, s2, 1]" = torch.ops.aten.rsqrt.default(add_3); add_3 = None
mul_2: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(to_8, rsqrt); rsqrt = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:85 in forward, code: return self.weight * hidden_states.to(input_dtype)
_assert_tensor_metadata_default_9 = torch.ops.aten._assert_tensor_metadata.default(mul_2, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_9 = None
to_9: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(mul_2, torch.float32); mul_2 = None
mul_3: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(p_model_layers_0_input_layernorm_weight, to_9); p_model_layers_0_input_layernorm_weight = to_9 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear: "f32[s41, s2, 192]" = torch.ops.aten.linear.default(mul_3, p_model_layers_0_self_attn_q_proj_weight); p_model_layers_0_self_attn_q_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:254 in forward, code: query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
view: "f32[s41, s2, 2, 96]" = torch.ops.aten.view.default(linear, [sym_size_int_22, sym_size_int_23, -1, 96]); linear = None
transpose_1: "f32[s41, 2, s2, 96]" = torch.ops.aten.transpose.int(view, 1, 2); view = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_1: "f32[s41, s2, 96]" = torch.ops.aten.linear.default(mul_3, p_model_layers_0_self_attn_k_proj_weight); p_model_layers_0_self_attn_k_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:255 in forward, code: key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
view_1: "f32[s41, s2, 1, 96]" = torch.ops.aten.view.default(linear_1, [sym_size_int_22, sym_size_int_23, -1, 96]); linear_1 = None
transpose_2: "f32[s41, 1, s2, 96]" = torch.ops.aten.transpose.int(view_1, 1, 2); view_1 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_2: "f32[s41, s2, 96]" = torch.ops.aten.linear.default(mul_3, p_model_layers_0_self_attn_v_proj_weight); mul_3 = p_model_layers_0_self_attn_v_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:256 in forward, code: value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
view_2: "f32[s41, s2, 1, 96]" = torch.ops.aten.view.default(linear_2, [sym_size_int_22, sym_size_int_23, -1, 96]); linear_2 = None
transpose_3: "f32[s41, 1, s2, 96]" = torch.ops.aten.transpose.int(view_2, 1, 2); view_2 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:259 in forward, code: query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
unsqueeze_7: "f32[s41, 1, s2, 96]" = torch.ops.aten.unsqueeze.default(to_6, 1); to_6 = None
unsqueeze_8: "f32[s41, 1, s2, 96]" = torch.ops.aten.unsqueeze.default(to_7, 1); to_7 = None
mul_4: "f32[s41, 2, s2, 96]" = torch.ops.aten.mul.Tensor(transpose_1, unsqueeze_7)
slice_19: "f32[s41, 2, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_1, 3, 0, 48)
slice_20: "f32[s41, 2, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_1, 3, 48, 9223372036854775807); transpose_1 = None
neg: "f32[s41, 2, s2, 48]" = torch.ops.aten.neg.default(slice_20); slice_20 = None
cat_1: "f32[s41, 2, s2, 96]" = torch.ops.aten.cat.default([neg, slice_19], -1); neg = slice_19 = None
mul_5: "f32[s41, 2, s2, 96]" = torch.ops.aten.mul.Tensor(cat_1, unsqueeze_8); cat_1 = None
add_4: "f32[s41, 2, s2, 96]" = torch.ops.aten.add.Tensor(mul_4, mul_5); mul_4 = mul_5 = None
mul_6: "f32[s41, 1, s2, 96]" = torch.ops.aten.mul.Tensor(transpose_2, unsqueeze_7); unsqueeze_7 = None
slice_21: "f32[s41, 1, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_2, 3, 0, 48)
slice_22: "f32[s41, 1, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_2, 3, 48, 9223372036854775807); transpose_2 = None
neg_1: "f32[s41, 1, s2, 48]" = torch.ops.aten.neg.default(slice_22); slice_22 = None
cat_2: "f32[s41, 1, s2, 96]" = torch.ops.aten.cat.default([neg_1, slice_21], -1); neg_1 = slice_21 = None
mul_7: "f32[s41, 1, s2, 96]" = torch.ops.aten.mul.Tensor(cat_2, unsqueeze_8); cat_2 = unsqueeze_8 = None
add_5: "f32[s41, 1, s2, 96]" = torch.ops.aten.add.Tensor(mul_6, mul_7); mul_6 = mul_7 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:264 in forward, code: key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
cat_3: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.cat.default([past_key_values_key_cache_0, add_5], -2); past_key_values_key_cache_0 = add_5 = None
cat_4: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.cat.default([past_key_values_value_cache_0, transpose_3], -2); past_key_values_value_cache_0 = transpose_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:277 in forward, code: attn_output, attn_weights = attention_interface(
slice_23: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(cat_3, 0, 0, 9223372036854775807)
slice_24: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_23, 1, 0, 9223372036854775807); slice_23 = None
unsqueeze_9: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.unsqueeze.default(slice_24, 2); slice_24 = None
slice_25: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(unsqueeze_9, 3, 0, 9223372036854775807); unsqueeze_9 = None
slice_26: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_25, 4, 0, 9223372036854775807); slice_25 = None
expand_2: "f32[s41, 1, 2, s2 + s67, 96]" = torch.ops.aten.expand.default(slice_26, [sym_size_int_22, 1, 2, add, 96]); slice_26 = None
reshape_1: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.reshape.default(expand_2, [sym_size_int_22, 2, add, 96]); expand_2 = None
slice_27: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(cat_4, 0, 0, 9223372036854775807)
slice_28: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_27, 1, 0, 9223372036854775807); slice_27 = None
unsqueeze_10: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.unsqueeze.default(slice_28, 2); slice_28 = None
slice_29: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(unsqueeze_10, 3, 0, 9223372036854775807); unsqueeze_10 = None
slice_30: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_29, 4, 0, 9223372036854775807); slice_29 = None
expand_3: "f32[s41, 1, 2, s2 + s67, 96]" = torch.ops.aten.expand.default(slice_30, [sym_size_int_22, 1, 2, add, 96]); slice_30 = None
reshape_2: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.reshape.default(expand_3, [sym_size_int_22, 2, add, 96]); expand_3 = None
slice_31: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone); clone = None
slice_32: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_31, 1); slice_31 = None
slice_33: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_32, 2); slice_32 = None
slice_34: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_33, 3, None, add); slice_33 = add = None
contiguous: "f32[s41, 2, s2, 96]" = torch.ops.aten.contiguous.default(add_4); add_4 = None
contiguous_1: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.contiguous.default(reshape_1); reshape_1 = None
contiguous_2: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.contiguous.default(reshape_2); reshape_2 = None
scaled_dot_product_attention: "f32[s41, 2, s2, 96]" = torch.ops.aten.scaled_dot_product_attention.default(contiguous, contiguous_1, contiguous_2, slice_34, scale = 0.10206207261596575); contiguous = contiguous_1 = contiguous_2 = slice_34 = None
transpose_4: "f32[s41, s2, 2, 96]" = torch.ops.aten.transpose.int(scaled_dot_product_attention, 1, 2); scaled_dot_product_attention = None
contiguous_3: "f32[s41, s2, 2, 96]" = torch.ops.aten.contiguous.default(transpose_4); transpose_4 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:288 in forward, code: attn_output = attn_output.reshape(*input_shape, -1).contiguous()
reshape_3: "f32[s41, s2, 192]" = torch.ops.aten.reshape.default(contiguous_3, [sym_size_int_22, sym_size_int_23, -1]); contiguous_3 = sym_size_int_22 = sym_size_int_23 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_3: "f32[s41, s2, 192]" = torch.ops.aten.linear.default(reshape_3, p_model_layers_0_self_attn_o_proj_weight); reshape_3 = p_model_layers_0_self_attn_o_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:331 in forward, code: hidden_states = residual + hidden_states
add_7: "f32[s41, s2, 192]" = torch.ops.aten.add.Tensor(to_8, linear_3); to_8 = linear_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:82 in forward, code: hidden_states = hidden_states.to(torch.float32)
_assert_tensor_metadata_default_10 = torch.ops.aten._assert_tensor_metadata.default(add_7, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_10 = None
to_10: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(add_7, torch.float32); add_7 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:83 in forward, code: variance = hidden_states.pow(2).mean(-1, keepdim=True)
pow_2: "f32[s41, s2, 192]" = torch.ops.aten.pow.Tensor_Scalar(to_10, 2)
mean_1: "f32[s41, s2, 1]" = torch.ops.aten.mean.dim(pow_2, [-1], True); pow_2 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:84 in forward, code: hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
add_8: "f32[s41, s2, 1]" = torch.ops.aten.add.Tensor(mean_1, 1e-05); mean_1 = None
rsqrt_1: "f32[s41, s2, 1]" = torch.ops.aten.rsqrt.default(add_8); add_8 = None
mul_8: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(to_10, rsqrt_1); rsqrt_1 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:85 in forward, code: return self.weight * hidden_states.to(input_dtype)
_assert_tensor_metadata_default_11 = torch.ops.aten._assert_tensor_metadata.default(mul_8, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_11 = None
to_11: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(mul_8, torch.float32); mul_8 = None
mul_9: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(p_model_layers_0_post_attention_layernorm_weight, to_11); p_model_layers_0_post_attention_layernorm_weight = to_11 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_4: "f32[s41, s2, 1024]" = torch.ops.aten.linear.default(mul_9, p_model_layers_0_mlp_gate_proj_weight); p_model_layers_0_mlp_gate_proj_weight = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/activation.py:434 in forward, code: return F.silu(input, inplace=self.inplace)
silu: "f32[s41, s2, 1024]" = torch.ops.aten.silu.default(linear_4); linear_4 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_5: "f32[s41, s2, 1024]" = torch.ops.aten.linear.default(mul_9, p_model_layers_0_mlp_up_proj_weight); mul_9 = p_model_layers_0_mlp_up_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:174 in forward, code: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
mul_10: "f32[s41, s2, 1024]" = torch.ops.aten.mul.Tensor(silu, linear_5); silu = linear_5 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_6: "f32[s41, s2, 192]" = torch.ops.aten.linear.default(mul_10, p_model_layers_0_mlp_down_proj_weight); mul_10 = p_model_layers_0_mlp_down_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:337 in forward, code: hidden_states = residual + hidden_states
add_9: "f32[s41, s2, 192]" = torch.ops.aten.add.Tensor(to_10, linear_6); to_10 = linear_6 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:82 in forward, code: hidden_states = hidden_states.to(torch.float32)
_assert_tensor_metadata_default_12 = torch.ops.aten._assert_tensor_metadata.default(add_9, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_12 = None
to_12: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(add_9, torch.float32); add_9 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:83 in forward, code: variance = hidden_states.pow(2).mean(-1, keepdim=True)
pow_3: "f32[s41, s2, 192]" = torch.ops.aten.pow.Tensor_Scalar(to_12, 2)
mean_2: "f32[s41, s2, 1]" = torch.ops.aten.mean.dim(pow_3, [-1], True); pow_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:84 in forward, code: hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
add_10: "f32[s41, s2, 1]" = torch.ops.aten.add.Tensor(mean_2, 1e-05); mean_2 = None
rsqrt_2: "f32[s41, s2, 1]" = torch.ops.aten.rsqrt.default(add_10); add_10 = None
mul_11: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(to_12, rsqrt_2); to_12 = rsqrt_2 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:85 in forward, code: return self.weight * hidden_states.to(input_dtype)
_assert_tensor_metadata_default_13 = torch.ops.aten._assert_tensor_metadata.default(mul_11, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_13 = None
to_13: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(mul_11, torch.float32); mul_11 = None
mul_12: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(p_model_norm_weight, to_13); p_model_norm_weight = to_13 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:825 in forward, code: logits = self.lm_head(hidden_states[:, slice_indices, :])
slice_35: "f32[s41, s2, 192]" = torch.ops.aten.slice.Tensor(mul_12); mul_12 = None
slice_36: "f32[s41, s2, 192]" = torch.ops.aten.slice.Tensor(slice_35, 1, 0); slice_35 = None
slice_37: "f32[s41, s2, 192]" = torch.ops.aten.slice.Tensor(slice_36, 2); slice_36 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_7: "f32[s41, s2, 32000]" = torch.ops.aten.linear.default(slice_37, p_lm_head_weight); slice_37 = p_lm_head_weight = None
return (linear_7, cat_3, cat_4)
class submod_1(torch.nn.Module):
def forward(self, b_model_rotary_emb_inv_freq: "f32[48]", sym_size_int_22: "Sym(s41)", position_ids: "i64[s41, s2]"):
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:115 in forward, code: inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
unsqueeze_4: "f32[1, 48]" = torch.ops.aten.unsqueeze.default(b_model_rotary_emb_inv_freq, 0); b_model_rotary_emb_inv_freq = None
slice_16: "f32[1, 48]" = torch.ops.aten.slice.Tensor(unsqueeze_4, 1, 0, 9223372036854775807); unsqueeze_4 = None
unsqueeze_5: "f32[1, 48, 1]" = torch.ops.aten.unsqueeze.default(slice_16, 2); slice_16 = None
_assert_tensor_metadata_default_1 = torch.ops.aten._assert_tensor_metadata.default(unsqueeze_5, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_1 = None
to_1: "f32[1, 48, 1]" = torch.ops.aten.to.dtype(unsqueeze_5, torch.float32); unsqueeze_5 = None
expand_1: "f32[s41, 48, 1]" = torch.ops.aten.expand.default(to_1, [sym_size_int_22, -1, 1]); to_1 = sym_size_int_22 = None
_assert_tensor_metadata_default_2 = torch.ops.aten._assert_tensor_metadata.default(expand_1, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_2 = None
to_2: "f32[s41, 48, 1]" = torch.ops.aten.to.dtype_layout(expand_1, dtype = torch.float32, layout = torch.strided, device = device(type='cpu')); expand_1 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:116 in forward, code: position_ids_expanded = position_ids[:, None, :].float()
slice_17: "i64[s41, s2]" = torch.ops.aten.slice.Tensor(position_ids, 0, 0, 9223372036854775807); position_ids = None
unsqueeze_6: "i64[s41, 1, s2]" = torch.ops.aten.unsqueeze.default(slice_17, 1); slice_17 = None
slice_18: "i64[s41, 1, s2]" = torch.ops.aten.slice.Tensor(unsqueeze_6, 2, 0, 9223372036854775807); unsqueeze_6 = None
_assert_tensor_metadata_default_3 = torch.ops.aten._assert_tensor_metadata.default(slice_18, dtype = torch.int64, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_3 = None
to_3: "f32[s41, 1, s2]" = torch.ops.aten.to.dtype(slice_18, torch.float32); slice_18 = None
# No stacktrace found for following nodes
submod_3 = self.submod_1
wrap_with_autocast = torch.ops.higher_order.wrap_with_autocast('cpu', torch.bfloat16, False, False, submod_3, to_2, to_3); submod_3 = to_2 = to_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:122 in forward, code: cos = emb.cos() * self.attention_scaling
mul: "f32[s41, s2, 96]" = wrap_with_autocast[0]
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:123 in forward, code: sin = emb.sin() * self.attention_scaling
mul_1: "f32[s41, s2, 96]" = wrap_with_autocast[1]; wrap_with_autocast = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:125 in forward, code: return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
_assert_tensor_metadata_default_6 = torch.ops.aten._assert_tensor_metadata.default(mul, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_6 = None
to_6: "f32[s41, s2, 96]" = torch.ops.aten.to.dtype(mul, torch.float32); mul = None
_assert_tensor_metadata_default_7 = torch.ops.aten._assert_tensor_metadata.default(mul_1, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_7 = None
to_7: "f32[s41, s2, 96]" = torch.ops.aten.to.dtype(mul_1, torch.float32); mul_1 = None
return (to_6, to_7)
class submod_1(torch.nn.Module):
def forward(self, to_2: "f32[s41, 48, 1]", to_3: "f32[s41, 1, s2]"):
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:120 in forward, code: freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
_assert_tensor_metadata_default_4 = torch.ops.aten._assert_tensor_metadata.default(to_2, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_4 = None
to_4: "f32[s41, 48, 1]" = torch.ops.aten.to.dtype(to_2, torch.float32); to_2 = None
_assert_tensor_metadata_default_5 = torch.ops.aten._assert_tensor_metadata.default(to_3, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_5 = None
to_5: "f32[s41, 1, s2]" = torch.ops.aten.to.dtype(to_3, torch.float32); to_3 = None
matmul: "f32[s41, 48, s2]" = torch.ops.aten.matmul.default(to_4, to_5); to_4 = to_5 = None
transpose: "f32[s41, s2, 48]" = torch.ops.aten.transpose.int(matmul, 1, 2); matmul = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:121 in forward, code: emb = torch.cat((freqs, freqs), dim=-1)
cat: "f32[s41, s2, 96]" = torch.ops.aten.cat.default([transpose, transpose], -1); transpose = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:122 in forward, code: cos = emb.cos() * self.attention_scaling
cos: "f32[s41, s2, 96]" = torch.ops.aten.cos.default(cat)
mul: "f32[s41, s2, 96]" = torch.ops.aten.mul.Tensor(cos, 1.0); cos = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:123 in forward, code: sin = emb.sin() * self.attention_scaling
sin: "f32[s41, s2, 96]" = torch.ops.aten.sin.default(cat); cat = None
mul_1: "f32[s41, s2, 96]" = torch.ops.aten.mul.Tensor(sin, 1.0); sin = None
return (mul, mul_1)
Graph signature:
# inputs
p_model_embed_tokens_weight: PARAMETER target='model.embed_tokens.weight'
p_model_layers_0_self_attn_q_proj_weight: PARAMETER target='model.layers.0.self_attn.q_proj.weight'
p_model_layers_0_self_attn_k_proj_weight: PARAMETER target='model.layers.0.self_attn.k_proj.weight'
p_model_layers_0_self_attn_v_proj_weight: PARAMETER target='model.layers.0.self_attn.v_proj.weight'
p_model_layers_0_self_attn_o_proj_weight: PARAMETER target='model.layers.0.self_attn.o_proj.weight'
p_model_layers_0_mlp_gate_proj_weight: PARAMETER target='model.layers.0.mlp.gate_proj.weight'
p_model_layers_0_mlp_up_proj_weight: PARAMETER target='model.layers.0.mlp.up_proj.weight'
p_model_layers_0_mlp_down_proj_weight: PARAMETER target='model.layers.0.mlp.down_proj.weight'
p_model_layers_0_input_layernorm_weight: PARAMETER target='model.layers.0.input_layernorm.weight'
p_model_layers_0_post_attention_layernorm_weight: PARAMETER target='model.layers.0.post_attention_layernorm.weight'
p_model_norm_weight: PARAMETER target='model.norm.weight'
p_lm_head_weight: PARAMETER target='lm_head.weight'
b_model_rotary_emb_inv_freq: BUFFER target='model.rotary_emb.inv_freq' persistent=False
input_ids: USER_INPUT
attention_mask: USER_INPUT
position_ids: USER_INPUT
past_key_values_key_cache_0: USER_INPUT
past_key_values_value_cache_0: USER_INPUT
# outputs
linear_7: USER_OUTPUT
cat_3: USER_OUTPUT
cat_4: USER_OUTPUT
Range constraints: {s41: VR[1, 1024], s2: VR[2, 4096], s2 + s67: VR[4, 8192], s67: VR[1, 4096]}
Back to the original model¶
Let’s use the same dummy inputs but we use the downloaded model.
Dummy inputs and dynamic shapes are created by function
onnx_diagnostic.torch_models.llms.get_tiny_llm()
.
data = get_tiny_llm()
inputs, dynamic_shapes = data["inputs"], data["dynamic_shapes"]
Let’s print the inputs.
print(string_type(inputs, with_shape=True))
dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
{'attention_mask': {0: Dim('batch', min=1, max=1024),
1: _DimHint(type=<_DimHintType.DYNAMIC: 3>,
min=None,
max=None,
_factory=True)},
'input_ids': {0: Dim('batch', min=1, max=1024),
1: Dim('seq_length', min=1, max=4096)},
'past_key_values': [[{0: Dim('batch', min=1, max=1024),
2: Dim('cache_length', min=1, max=4096)}],
[{0: Dim('batch', min=1, max=1024),
2: Dim('cache_length', min=1, max=4096)}]],
'position_ids': {0: Dim('batch', min=1, max=1024),
1: _DimHint(type=<_DimHintType.DYNAMIC: 3>,
min=None,
max=None,
_factory=True)}}
And Let’s finally export.
try:
ep = torch.export.export(
model, (), kwargs=cloned_inputs, dynamic_shapes=dynamic_shapes, strict=False
)
print("It worked:")
print(ep)
except Exception as e:
# To work, it needs at least PRs:
# * https://github.com/huggingface/transformers/pull/36311
# * https://github.com/huggingface/transformers/pull/36652
print("It failed:", e)
It worked:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_model_embed_tokens_weight: "f32[32000, 192]", p_model_layers_0_self_attn_q_proj_weight: "f32[192, 192]", p_model_layers_0_self_attn_k_proj_weight: "f32[96, 192]", p_model_layers_0_self_attn_v_proj_weight: "f32[96, 192]", p_model_layers_0_self_attn_o_proj_weight: "f32[192, 192]", p_model_layers_0_mlp_gate_proj_weight: "f32[1024, 192]", p_model_layers_0_mlp_up_proj_weight: "f32[1024, 192]", p_model_layers_0_mlp_down_proj_weight: "f32[192, 1024]", p_model_layers_0_input_layernorm_weight: "f32[192]", p_model_layers_0_post_attention_layernorm_weight: "f32[192]", p_model_norm_weight: "f32[192]", p_lm_head_weight: "f32[32000, 192]", b_model_rotary_emb_inv_freq: "f32[48]", input_ids: "i64[s41, s2]", attention_mask: "i64[s41, s2 + s67]", position_ids: "i64[s41, s2]", past_key_values_key_cache_0: "f32[s41, 1, s67, 96]", past_key_values_value_cache_0: "f32[s41, 1, s67, 96]"):
#
sym_size_int_22: "Sym(s41)" = torch.ops.aten.sym_size.int(input_ids, 0)
sym_size_int_23: "Sym(s2)" = torch.ops.aten.sym_size.int(input_ids, 1)
sym_size_int_24: "Sym(s67)" = torch.ops.aten.sym_size.int(past_key_values_key_cache_0, 2)
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/sparse.py:190 in forward, code: return F.embedding(
embedding: "f32[s41, s2, 192]" = torch.ops.aten.embedding.default(p_model_embed_tokens_weight, input_ids); p_model_embed_tokens_weight = input_ids = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:542 in forward, code: past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
add: "Sym(s2 + s67)" = sym_size_int_24 + sym_size_int_23
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:541 in forward, code: cache_position = torch.arange(
arange: "i64[s2]" = torch.ops.aten.arange.start(sym_size_int_24, add, device = device(type='cpu'), pin_memory = False); sym_size_int_24 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:548 in forward, code: causal_mask = self._update_causal_mask(
full: "f32[s2, s2 + s67]" = torch.ops.aten.full.default([sym_size_int_23, add], -3.4028234663852886e+38, dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
triu: "f32[s2, s2 + s67]" = torch.ops.aten.triu.default(full, 1); full = None
arange_1: "i64[s2 + s67]" = torch.ops.aten.arange.default(add, device = device(type='cpu'), pin_memory = False)
reshape: "i64[s2, 1]" = torch.ops.aten.reshape.default(arange, [-1, 1]); arange = None
gt: "b8[s2, s2 + s67]" = torch.ops.aten.gt.Tensor(arange_1, reshape); arange_1 = reshape = None
mul_: "f32[s2, s2 + s67]" = torch.ops.aten.mul_.Tensor(triu, gt); triu = gt = None
unsqueeze: "f32[1, s2, s2 + s67]" = torch.ops.aten.unsqueeze.default(mul_, 0); mul_ = None
unsqueeze_1: "f32[1, 1, s2, s2 + s67]" = torch.ops.aten.unsqueeze.default(unsqueeze, 1); unsqueeze = None
slice_1: "f32[1, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(unsqueeze_1, 2, 0, 9223372036854775807); unsqueeze_1 = None
slice_2: "f32[1, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_1, 3, 0, 9223372036854775807); slice_1 = None
expand: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.expand.default(slice_2, [sym_size_int_22, 1, -1, -1]); slice_2 = None
clone: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.clone.default(expand); expand = None
slice_3: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone)
slice_4: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_3, 1); slice_3 = None
slice_5: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_4, 2); slice_4 = None
slice_6: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_5, 3, None, add); slice_5 = None
slice_7: "i64[s41, s2 + s67]" = torch.ops.aten.slice.Tensor(attention_mask, 0, 0, 9223372036854775807); attention_mask = None
unsqueeze_2: "i64[s41, 1, s2 + s67]" = torch.ops.aten.unsqueeze.default(slice_7, 1); slice_7 = None
unsqueeze_3: "i64[s41, 1, 1, s2 + s67]" = torch.ops.aten.unsqueeze.default(unsqueeze_2, 2); unsqueeze_2 = None
slice_8: "i64[s41, 1, 1, s2 + s67]" = torch.ops.aten.slice.Tensor(unsqueeze_3, 3, 0, 9223372036854775807); unsqueeze_3 = None
_assert_tensor_metadata_default = torch.ops.aten._assert_tensor_metadata.default(slice_8, dtype = torch.int64, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default = None
to: "i64[s41, 1, 1, s2 + s67]" = torch.ops.aten.to.dtype_layout(slice_8, dtype = torch.int64, layout = torch.strided, device = device(type='cpu')); slice_8 = None
add_2: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.add.Tensor(slice_6, to); slice_6 = to = None
eq_4: "b8[s41, 1, s2, s2 + s67]" = torch.ops.aten.eq.Scalar(add_2, 0); add_2 = None
slice_9: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone)
slice_10: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_9, 1); slice_9 = None
slice_11: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_10, 2); slice_10 = None
slice_12: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_11, 3, None, add); slice_11 = None
masked_fill: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.masked_fill.Scalar(slice_12, eq_4, -3.4028234663852886e+38); slice_12 = eq_4 = None
slice_13: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone, 0, 0, 9223372036854775807)
slice_14: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_13, 1, 0, 9223372036854775807); slice_13 = None
slice_15: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_14, 2, 0, 9223372036854775807); slice_14 = None
copy_: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.copy_.default(slice_15, masked_fill); slice_15 = masked_fill = copy_ = None
# No stacktrace found for following nodes
submod_3 = self.submod_1
wrap_with_set_grad_enabled = torch.ops.higher_order.wrap_with_set_grad_enabled(False, submod_3, b_model_rotary_emb_inv_freq, sym_size_int_22, position_ids); submod_3 = b_model_rotary_emb_inv_freq = position_ids = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:125 in forward, code: return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
to_6: "f32[s41, s2, 96]" = wrap_with_set_grad_enabled[0]
to_7: "f32[s41, s2, 96]" = wrap_with_set_grad_enabled[1]; wrap_with_set_grad_enabled = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:82 in forward, code: hidden_states = hidden_states.to(torch.float32)
_assert_tensor_metadata_default_8 = torch.ops.aten._assert_tensor_metadata.default(embedding, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_8 = None
to_8: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(embedding, torch.float32); embedding = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:83 in forward, code: variance = hidden_states.pow(2).mean(-1, keepdim=True)
pow_1: "f32[s41, s2, 192]" = torch.ops.aten.pow.Tensor_Scalar(to_8, 2)
mean: "f32[s41, s2, 1]" = torch.ops.aten.mean.dim(pow_1, [-1], True); pow_1 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:84 in forward, code: hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
add_3: "f32[s41, s2, 1]" = torch.ops.aten.add.Tensor(mean, 1e-05); mean = None
rsqrt: "f32[s41, s2, 1]" = torch.ops.aten.rsqrt.default(add_3); add_3 = None
mul_2: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(to_8, rsqrt); rsqrt = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:85 in forward, code: return self.weight * hidden_states.to(input_dtype)
_assert_tensor_metadata_default_9 = torch.ops.aten._assert_tensor_metadata.default(mul_2, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_9 = None
to_9: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(mul_2, torch.float32); mul_2 = None
mul_3: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(p_model_layers_0_input_layernorm_weight, to_9); p_model_layers_0_input_layernorm_weight = to_9 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear: "f32[s41, s2, 192]" = torch.ops.aten.linear.default(mul_3, p_model_layers_0_self_attn_q_proj_weight); p_model_layers_0_self_attn_q_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:254 in forward, code: query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
view: "f32[s41, s2, 2, 96]" = torch.ops.aten.view.default(linear, [sym_size_int_22, sym_size_int_23, -1, 96]); linear = None
transpose_1: "f32[s41, 2, s2, 96]" = torch.ops.aten.transpose.int(view, 1, 2); view = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_1: "f32[s41, s2, 96]" = torch.ops.aten.linear.default(mul_3, p_model_layers_0_self_attn_k_proj_weight); p_model_layers_0_self_attn_k_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:255 in forward, code: key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
view_1: "f32[s41, s2, 1, 96]" = torch.ops.aten.view.default(linear_1, [sym_size_int_22, sym_size_int_23, -1, 96]); linear_1 = None
transpose_2: "f32[s41, 1, s2, 96]" = torch.ops.aten.transpose.int(view_1, 1, 2); view_1 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_2: "f32[s41, s2, 96]" = torch.ops.aten.linear.default(mul_3, p_model_layers_0_self_attn_v_proj_weight); mul_3 = p_model_layers_0_self_attn_v_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:256 in forward, code: value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
view_2: "f32[s41, s2, 1, 96]" = torch.ops.aten.view.default(linear_2, [sym_size_int_22, sym_size_int_23, -1, 96]); linear_2 = None
transpose_3: "f32[s41, 1, s2, 96]" = torch.ops.aten.transpose.int(view_2, 1, 2); view_2 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:259 in forward, code: query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
unsqueeze_7: "f32[s41, 1, s2, 96]" = torch.ops.aten.unsqueeze.default(to_6, 1); to_6 = None
unsqueeze_8: "f32[s41, 1, s2, 96]" = torch.ops.aten.unsqueeze.default(to_7, 1); to_7 = None
mul_4: "f32[s41, 2, s2, 96]" = torch.ops.aten.mul.Tensor(transpose_1, unsqueeze_7)
slice_19: "f32[s41, 2, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_1, 3, 0, 48)
slice_20: "f32[s41, 2, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_1, 3, 48, 9223372036854775807); transpose_1 = None
neg: "f32[s41, 2, s2, 48]" = torch.ops.aten.neg.default(slice_20); slice_20 = None
cat_1: "f32[s41, 2, s2, 96]" = torch.ops.aten.cat.default([neg, slice_19], -1); neg = slice_19 = None
mul_5: "f32[s41, 2, s2, 96]" = torch.ops.aten.mul.Tensor(cat_1, unsqueeze_8); cat_1 = None
add_4: "f32[s41, 2, s2, 96]" = torch.ops.aten.add.Tensor(mul_4, mul_5); mul_4 = mul_5 = None
mul_6: "f32[s41, 1, s2, 96]" = torch.ops.aten.mul.Tensor(transpose_2, unsqueeze_7); unsqueeze_7 = None
slice_21: "f32[s41, 1, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_2, 3, 0, 48)
slice_22: "f32[s41, 1, s2, 48]" = torch.ops.aten.slice.Tensor(transpose_2, 3, 48, 9223372036854775807); transpose_2 = None
neg_1: "f32[s41, 1, s2, 48]" = torch.ops.aten.neg.default(slice_22); slice_22 = None
cat_2: "f32[s41, 1, s2, 96]" = torch.ops.aten.cat.default([neg_1, slice_21], -1); neg_1 = slice_21 = None
mul_7: "f32[s41, 1, s2, 96]" = torch.ops.aten.mul.Tensor(cat_2, unsqueeze_8); cat_2 = unsqueeze_8 = None
add_5: "f32[s41, 1, s2, 96]" = torch.ops.aten.add.Tensor(mul_6, mul_7); mul_6 = mul_7 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:264 in forward, code: key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
cat_3: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.cat.default([past_key_values_key_cache_0, add_5], -2); past_key_values_key_cache_0 = add_5 = None
cat_4: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.cat.default([past_key_values_value_cache_0, transpose_3], -2); past_key_values_value_cache_0 = transpose_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:277 in forward, code: attn_output, attn_weights = attention_interface(
slice_23: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(cat_3, 0, 0, 9223372036854775807)
slice_24: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_23, 1, 0, 9223372036854775807); slice_23 = None
unsqueeze_9: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.unsqueeze.default(slice_24, 2); slice_24 = None
slice_25: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(unsqueeze_9, 3, 0, 9223372036854775807); unsqueeze_9 = None
slice_26: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_25, 4, 0, 9223372036854775807); slice_25 = None
expand_2: "f32[s41, 1, 2, s2 + s67, 96]" = torch.ops.aten.expand.default(slice_26, [sym_size_int_22, 1, 2, add, 96]); slice_26 = None
reshape_1: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.reshape.default(expand_2, [sym_size_int_22, 2, add, 96]); expand_2 = None
slice_27: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(cat_4, 0, 0, 9223372036854775807)
slice_28: "f32[s41, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_27, 1, 0, 9223372036854775807); slice_27 = None
unsqueeze_10: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.unsqueeze.default(slice_28, 2); slice_28 = None
slice_29: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(unsqueeze_10, 3, 0, 9223372036854775807); unsqueeze_10 = None
slice_30: "f32[s41, 1, 1, s2 + s67, 96]" = torch.ops.aten.slice.Tensor(slice_29, 4, 0, 9223372036854775807); slice_29 = None
expand_3: "f32[s41, 1, 2, s2 + s67, 96]" = torch.ops.aten.expand.default(slice_30, [sym_size_int_22, 1, 2, add, 96]); slice_30 = None
reshape_2: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.reshape.default(expand_3, [sym_size_int_22, 2, add, 96]); expand_3 = None
slice_31: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(clone); clone = None
slice_32: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_31, 1); slice_31 = None
slice_33: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_32, 2); slice_32 = None
slice_34: "f32[s41, 1, s2, s2 + s67]" = torch.ops.aten.slice.Tensor(slice_33, 3, None, add); slice_33 = add = None
contiguous: "f32[s41, 2, s2, 96]" = torch.ops.aten.contiguous.default(add_4); add_4 = None
contiguous_1: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.contiguous.default(reshape_1); reshape_1 = None
contiguous_2: "f32[s41, 2, s2 + s67, 96]" = torch.ops.aten.contiguous.default(reshape_2); reshape_2 = None
scaled_dot_product_attention: "f32[s41, 2, s2, 96]" = torch.ops.aten.scaled_dot_product_attention.default(contiguous, contiguous_1, contiguous_2, slice_34, scale = 0.10206207261596575); contiguous = contiguous_1 = contiguous_2 = slice_34 = None
transpose_4: "f32[s41, s2, 2, 96]" = torch.ops.aten.transpose.int(scaled_dot_product_attention, 1, 2); scaled_dot_product_attention = None
contiguous_3: "f32[s41, s2, 2, 96]" = torch.ops.aten.contiguous.default(transpose_4); transpose_4 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:288 in forward, code: attn_output = attn_output.reshape(*input_shape, -1).contiguous()
reshape_3: "f32[s41, s2, 192]" = torch.ops.aten.reshape.default(contiguous_3, [sym_size_int_22, sym_size_int_23, -1]); contiguous_3 = sym_size_int_22 = sym_size_int_23 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_3: "f32[s41, s2, 192]" = torch.ops.aten.linear.default(reshape_3, p_model_layers_0_self_attn_o_proj_weight); reshape_3 = p_model_layers_0_self_attn_o_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:331 in forward, code: hidden_states = residual + hidden_states
add_7: "f32[s41, s2, 192]" = torch.ops.aten.add.Tensor(to_8, linear_3); to_8 = linear_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:82 in forward, code: hidden_states = hidden_states.to(torch.float32)
_assert_tensor_metadata_default_10 = torch.ops.aten._assert_tensor_metadata.default(add_7, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_10 = None
to_10: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(add_7, torch.float32); add_7 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:83 in forward, code: variance = hidden_states.pow(2).mean(-1, keepdim=True)
pow_2: "f32[s41, s2, 192]" = torch.ops.aten.pow.Tensor_Scalar(to_10, 2)
mean_1: "f32[s41, s2, 1]" = torch.ops.aten.mean.dim(pow_2, [-1], True); pow_2 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:84 in forward, code: hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
add_8: "f32[s41, s2, 1]" = torch.ops.aten.add.Tensor(mean_1, 1e-05); mean_1 = None
rsqrt_1: "f32[s41, s2, 1]" = torch.ops.aten.rsqrt.default(add_8); add_8 = None
mul_8: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(to_10, rsqrt_1); rsqrt_1 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:85 in forward, code: return self.weight * hidden_states.to(input_dtype)
_assert_tensor_metadata_default_11 = torch.ops.aten._assert_tensor_metadata.default(mul_8, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_11 = None
to_11: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(mul_8, torch.float32); mul_8 = None
mul_9: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(p_model_layers_0_post_attention_layernorm_weight, to_11); p_model_layers_0_post_attention_layernorm_weight = to_11 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_4: "f32[s41, s2, 1024]" = torch.ops.aten.linear.default(mul_9, p_model_layers_0_mlp_gate_proj_weight); p_model_layers_0_mlp_gate_proj_weight = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/activation.py:434 in forward, code: return F.silu(input, inplace=self.inplace)
silu: "f32[s41, s2, 1024]" = torch.ops.aten.silu.default(linear_4); linear_4 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_5: "f32[s41, s2, 1024]" = torch.ops.aten.linear.default(mul_9, p_model_layers_0_mlp_up_proj_weight); mul_9 = p_model_layers_0_mlp_up_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:174 in forward, code: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
mul_10: "f32[s41, s2, 1024]" = torch.ops.aten.mul.Tensor(silu, linear_5); silu = linear_5 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_6: "f32[s41, s2, 192]" = torch.ops.aten.linear.default(mul_10, p_model_layers_0_mlp_down_proj_weight); mul_10 = p_model_layers_0_mlp_down_proj_weight = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:337 in forward, code: hidden_states = residual + hidden_states
add_9: "f32[s41, s2, 192]" = torch.ops.aten.add.Tensor(to_10, linear_6); to_10 = linear_6 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:82 in forward, code: hidden_states = hidden_states.to(torch.float32)
_assert_tensor_metadata_default_12 = torch.ops.aten._assert_tensor_metadata.default(add_9, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_12 = None
to_12: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(add_9, torch.float32); add_9 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:83 in forward, code: variance = hidden_states.pow(2).mean(-1, keepdim=True)
pow_3: "f32[s41, s2, 192]" = torch.ops.aten.pow.Tensor_Scalar(to_12, 2)
mean_2: "f32[s41, s2, 1]" = torch.ops.aten.mean.dim(pow_3, [-1], True); pow_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:84 in forward, code: hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
add_10: "f32[s41, s2, 1]" = torch.ops.aten.add.Tensor(mean_2, 1e-05); mean_2 = None
rsqrt_2: "f32[s41, s2, 1]" = torch.ops.aten.rsqrt.default(add_10); add_10 = None
mul_11: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(to_12, rsqrt_2); to_12 = rsqrt_2 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:85 in forward, code: return self.weight * hidden_states.to(input_dtype)
_assert_tensor_metadata_default_13 = torch.ops.aten._assert_tensor_metadata.default(mul_11, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_13 = None
to_13: "f32[s41, s2, 192]" = torch.ops.aten.to.dtype(mul_11, torch.float32); mul_11 = None
mul_12: "f32[s41, s2, 192]" = torch.ops.aten.mul.Tensor(p_model_norm_weight, to_13); p_model_norm_weight = to_13 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:825 in forward, code: logits = self.lm_head(hidden_states[:, slice_indices, :])
slice_35: "f32[s41, s2, 192]" = torch.ops.aten.slice.Tensor(mul_12); mul_12 = None
slice_36: "f32[s41, s2, 192]" = torch.ops.aten.slice.Tensor(slice_35, 1, 0); slice_35 = None
slice_37: "f32[s41, s2, 192]" = torch.ops.aten.slice.Tensor(slice_36, 2); slice_36 = None
# File: /home/xadupre/vv/this312/lib/python3.12/site-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
linear_7: "f32[s41, s2, 32000]" = torch.ops.aten.linear.default(slice_37, p_lm_head_weight); slice_37 = p_lm_head_weight = None
return (linear_7, cat_3, cat_4)
class submod_1(torch.nn.Module):
def forward(self, b_model_rotary_emb_inv_freq: "f32[48]", sym_size_int_22: "Sym(s41)", position_ids: "i64[s41, s2]"):
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:115 in forward, code: inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
unsqueeze_4: "f32[1, 48]" = torch.ops.aten.unsqueeze.default(b_model_rotary_emb_inv_freq, 0); b_model_rotary_emb_inv_freq = None
slice_16: "f32[1, 48]" = torch.ops.aten.slice.Tensor(unsqueeze_4, 1, 0, 9223372036854775807); unsqueeze_4 = None
unsqueeze_5: "f32[1, 48, 1]" = torch.ops.aten.unsqueeze.default(slice_16, 2); slice_16 = None
_assert_tensor_metadata_default_1 = torch.ops.aten._assert_tensor_metadata.default(unsqueeze_5, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_1 = None
to_1: "f32[1, 48, 1]" = torch.ops.aten.to.dtype(unsqueeze_5, torch.float32); unsqueeze_5 = None
expand_1: "f32[s41, 48, 1]" = torch.ops.aten.expand.default(to_1, [sym_size_int_22, -1, 1]); to_1 = sym_size_int_22 = None
_assert_tensor_metadata_default_2 = torch.ops.aten._assert_tensor_metadata.default(expand_1, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_2 = None
to_2: "f32[s41, 48, 1]" = torch.ops.aten.to.dtype_layout(expand_1, dtype = torch.float32, layout = torch.strided, device = device(type='cpu')); expand_1 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:116 in forward, code: position_ids_expanded = position_ids[:, None, :].float()
slice_17: "i64[s41, s2]" = torch.ops.aten.slice.Tensor(position_ids, 0, 0, 9223372036854775807); position_ids = None
unsqueeze_6: "i64[s41, 1, s2]" = torch.ops.aten.unsqueeze.default(slice_17, 1); slice_17 = None
slice_18: "i64[s41, 1, s2]" = torch.ops.aten.slice.Tensor(unsqueeze_6, 2, 0, 9223372036854775807); unsqueeze_6 = None
_assert_tensor_metadata_default_3 = torch.ops.aten._assert_tensor_metadata.default(slice_18, dtype = torch.int64, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_3 = None
to_3: "f32[s41, 1, s2]" = torch.ops.aten.to.dtype(slice_18, torch.float32); slice_18 = None
# No stacktrace found for following nodes
submod_3 = self.submod_1
wrap_with_autocast = torch.ops.higher_order.wrap_with_autocast('cpu', torch.bfloat16, False, False, submod_3, to_2, to_3); submod_3 = to_2 = to_3 = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:122 in forward, code: cos = emb.cos() * self.attention_scaling
mul: "f32[s41, s2, 96]" = wrap_with_autocast[0]
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:123 in forward, code: sin = emb.sin() * self.attention_scaling
mul_1: "f32[s41, s2, 96]" = wrap_with_autocast[1]; wrap_with_autocast = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:125 in forward, code: return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
_assert_tensor_metadata_default_6 = torch.ops.aten._assert_tensor_metadata.default(mul, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_6 = None
to_6: "f32[s41, s2, 96]" = torch.ops.aten.to.dtype(mul, torch.float32); mul = None
_assert_tensor_metadata_default_7 = torch.ops.aten._assert_tensor_metadata.default(mul_1, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_7 = None
to_7: "f32[s41, s2, 96]" = torch.ops.aten.to.dtype(mul_1, torch.float32); mul_1 = None
return (to_6, to_7)
class submod_1(torch.nn.Module):
def forward(self, to_2: "f32[s41, 48, 1]", to_3: "f32[s41, 1, s2]"):
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:120 in forward, code: freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
_assert_tensor_metadata_default_4 = torch.ops.aten._assert_tensor_metadata.default(to_2, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_4 = None
to_4: "f32[s41, 48, 1]" = torch.ops.aten.to.dtype(to_2, torch.float32); to_2 = None
_assert_tensor_metadata_default_5 = torch.ops.aten._assert_tensor_metadata.default(to_3, dtype = torch.float32, device = device(type='cpu'), layout = torch.strided); _assert_tensor_metadata_default_5 = None
to_5: "f32[s41, 1, s2]" = torch.ops.aten.to.dtype(to_3, torch.float32); to_3 = None
matmul: "f32[s41, 48, s2]" = torch.ops.aten.matmul.default(to_4, to_5); to_4 = to_5 = None
transpose: "f32[s41, s2, 48]" = torch.ops.aten.transpose.int(matmul, 1, 2); matmul = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:121 in forward, code: emb = torch.cat((freqs, freqs), dim=-1)
cat: "f32[s41, s2, 96]" = torch.ops.aten.cat.default([transpose, transpose], -1); transpose = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:122 in forward, code: cos = emb.cos() * self.attention_scaling
cos: "f32[s41, s2, 96]" = torch.ops.aten.cos.default(cat)
mul: "f32[s41, s2, 96]" = torch.ops.aten.mul.Tensor(cos, 1.0); cos = None
# File: /home/xadupre/github/transformers/src/transformers/models/llama/modeling_llama.py:123 in forward, code: sin = emb.sin() * self.attention_scaling
sin: "f32[s41, s2, 96]" = torch.ops.aten.sin.default(cat); cat = None
mul_1: "f32[s41, s2, 96]" = torch.ops.aten.mul.Tensor(sin, 1.0); sin = None
return (mul, mul_1)
Graph signature:
# inputs
p_model_embed_tokens_weight: PARAMETER target='model.embed_tokens.weight'
p_model_layers_0_self_attn_q_proj_weight: PARAMETER target='model.layers.0.self_attn.q_proj.weight'
p_model_layers_0_self_attn_k_proj_weight: PARAMETER target='model.layers.0.self_attn.k_proj.weight'
p_model_layers_0_self_attn_v_proj_weight: PARAMETER target='model.layers.0.self_attn.v_proj.weight'
p_model_layers_0_self_attn_o_proj_weight: PARAMETER target='model.layers.0.self_attn.o_proj.weight'
p_model_layers_0_mlp_gate_proj_weight: PARAMETER target='model.layers.0.mlp.gate_proj.weight'
p_model_layers_0_mlp_up_proj_weight: PARAMETER target='model.layers.0.mlp.up_proj.weight'
p_model_layers_0_mlp_down_proj_weight: PARAMETER target='model.layers.0.mlp.down_proj.weight'
p_model_layers_0_input_layernorm_weight: PARAMETER target='model.layers.0.input_layernorm.weight'
p_model_layers_0_post_attention_layernorm_weight: PARAMETER target='model.layers.0.post_attention_layernorm.weight'
p_model_norm_weight: PARAMETER target='model.norm.weight'
p_lm_head_weight: PARAMETER target='lm_head.weight'
b_model_rotary_emb_inv_freq: BUFFER target='model.rotary_emb.inv_freq' persistent=False
input_ids: USER_INPUT
attention_mask: USER_INPUT
position_ids: USER_INPUT
past_key_values_key_cache_0: USER_INPUT
past_key_values_value_cache_0: USER_INPUT
# outputs
linear_7: USER_OUTPUT
cat_3: USER_OUTPUT
cat_4: USER_OUTPUT
Range constraints: {s41: VR[1, 1024], s2: VR[2, 4096], s2 + s67: VR[4, 8192], s67: VR[1, 4096]}
If you have any error, then look at example Export Tiny-LLM with patches.
doc.plot_legend("Tiny-LLM\nforward inputs\nbehind generate", "torch.export.export", "tomato")

Total running time of the script: (0 minutes 5.261 seconds)
Related examples