{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Plus proches voisins\n", "\n", "On cherche à prédire la note d'un vin avec un modèle des plus proches voisins." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", " | fixed_acidity | \n", "volatile_acidity | \n", "citric_acid | \n", "residual_sugar | \n", "chlorides | \n", "free_sulfur_dioxide | \n", "total_sulfur_dioxide | \n", "density | \n", "pH | \n", "sulphates | \n", "alcohol | \n", "quality | \n", "color | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "7.4 | \n", "0.70 | \n", "0.00 | \n", "1.9 | \n", "0.076 | \n", "11.0 | \n", "34.0 | \n", "0.9978 | \n", "3.51 | \n", "0.56 | \n", "9.4 | \n", "5 | \n", "red | \n", "
1 | \n", "7.8 | \n", "0.88 | \n", "0.00 | \n", "2.6 | \n", "0.098 | \n", "25.0 | \n", "67.0 | \n", "0.9968 | \n", "3.20 | \n", "0.68 | \n", "9.8 | \n", "5 | \n", "red | \n", "
2 | \n", "7.8 | \n", "0.76 | \n", "0.04 | \n", "2.3 | \n", "0.092 | \n", "15.0 | \n", "54.0 | \n", "0.9970 | \n", "3.26 | \n", "0.65 | \n", "9.8 | \n", "5 | \n", "red | \n", "
3 | \n", "11.2 | \n", "0.28 | \n", "0.56 | \n", "1.9 | \n", "0.075 | \n", "17.0 | \n", "60.0 | \n", "0.9980 | \n", "3.16 | \n", "0.58 | \n", "9.8 | \n", "6 | \n", "red | \n", "
4 | \n", "7.4 | \n", "0.70 | \n", "0.00 | \n", "1.9 | \n", "0.076 | \n", "11.0 | \n", "34.0 | \n", "0.9978 | \n", "3.51 | \n", "0.56 | \n", "9.4 | \n", "5 | \n", "red | \n", "
KNeighborsRegressor(n_neighbors=1)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
KNeighborsRegressor(n_neighbors=1)