-m onnx_diagnostic validate … validate a model id

The command line is a wrapper around function onnx_diagnostic.torch_models.validate.validate_model().

Description

The command lines validate a model id available on HuggingFace but not only. It creates dummy inputs, runs the models on them, exports the model, measures the discrepancies…

    usage: validate [-h] [-m MID] [-t TASK] [-e EXPORT] [--opt OPT]
                    [-r | --run | --no-run] [-q | --quiet | --no-quiet]
                    [--patch [PATCH ...]] [--rewrite | --no-rewrite]
                    [--stop-if-static STOP_IF_STATIC]
                    [--same-as-trained | --no-same-as-trained]
                    [--trained | --no-trained] [--inputs2 INPUTS2]
                    [--runtime {onnxruntime,torch,ref,orteval,orteval10}]
                    [-o DUMP_FOLDER] [--drop DROP] [--opset OPSET]
                    [--subfolder SUBFOLDER] [--ortfusiontype ORTFUSIONTYPE]
                    [-v VERBOSE] [--dtype DTYPE] [--device DEVICE]
                    [--iop [KEY=VALUE ...]] [--mop [KEY=VALUE ...]]
                    [--repeat REPEAT] [--warmup WARMUP] [--outnames OUTNAMES]
                    [--ort-logs | --no-ort-logs]
                    [--quiet-input-sets QUIET_INPUT_SETS]
                    [--expop [KEY=VALUE ...]] [--save-ep SAVE_EP]
    
    Validates a model for a particular task given the model id.
    It exports the model and then validates it by computing the discrepancies
    on different input sets.
    
    options:
      -h, --help            show this help message and exit
      -m MID, --mid MID     model id, usually <author>/<name>
      -t TASK, --task TASK  force the task to use
      -e EXPORT, --export EXPORT
                            export the model with this exporter
      --opt OPT             optimization to apply after the export
      -r, --run, --no-run   Runs the model to check it runs.
      -q, --quiet, --no-quiet
                            Catches exception, reports them in the summary.
      --patch [PATCH ...]   Applies patches before exporting, it can be a boolean
                            to enable to disable the patches or be more finetuned
                            (default is True). It is possible to disable patch for torch
                            by adding:
                                --patch "patch_sympy=False" --patch "patch_torch=False"
      --rewrite, --no-rewrite
                            Applies rewrite before exporting.
      --stop-if-static STOP_IF_STATIC
                            Raises an exception if a dynamic dimension becomes static.
      --same-as-trained, --no-same-as-trained
                            Validates or exports a model identical to the trained model but not trained.
      --trained, --no-trained
                            Validates or exports the trained model (requires downloading).
      --inputs2 INPUTS2     Validates or exports the model on a second set of inputs
                            to check the exported model supports dynamism. The values is used
                            as an increment to the first set of inputs. A high value may trick
                            a different behavior in the model and missed by the exporter.
      --runtime {onnxruntime,torch,ref,orteval,orteval10}
                            onnx runtime to use, `onnxruntime` by default
      -o DUMP_FOLDER, --dump-folder DUMP_FOLDER
                            A folder is created to dumps statistics,
                            exported program, onnx...
      --drop DROP           Drops the following inputs names, it should be a list
                            with comma separated values, example:
                            --drop position_ids
      --opset OPSET         onnx opset to use, 18 by default
      --subfolder SUBFOLDER
                            Subfolder where to find the model and the configuration.
      --ortfusiontype ORTFUSIONTYPE
                            Applies onnxruntime fusion, this parameter should contain the
                            model type or multiple values separated by `|`. `ALL` can be used
                            to run them all.
      -v VERBOSE, --verbose VERBOSE
                            verbosity
      --dtype DTYPE         Changes dtype if necessary.
      --device DEVICE       Changes the device if necessary.
      --iop [KEY=VALUE ...]
                            Additional input options, used to change the default
                            inputs use to export. Examples:
                                --iop cls_cache=SlidingWindowCache
                                --iop cls_cache=StaticCache
      --mop [KEY=VALUE ...]
                            Additional model options, used to change some parameters
                            of the model. Example:
                                --mop attn_implementation=sdpa --mop attn_implementation=eager"
                                --mop "rope_scaling={'rope_type': 'dynamic', 'factor': 10.0}"
      --repeat REPEAT       number of times to run the model to measures inference time
      --warmup WARMUP       number of times to run the model to do warmup
      --outnames OUTNAMES   This comma separated list defines the output names the onnx exporter should use.
      --ort-logs, --no-ort-logs
                            Enables onnxruntime logging when the session is created
      --quiet-input-sets QUIET_INPUT_SETS
                            Avoids raising an exception when an input sets does not work with
                            the exported model. Example:
                                --quiet-input-sets=inputs,inputs22
      --expop [KEY=VALUE ...]
                            Additional exporter options, use to change some parameters
                            of the model. Examples:
                                --expop report=True
                                --expop report=True --expop verify=True
      --save-ep SAVE_EP     
                            saves the exported program with torch.export.save
                            and the inputs sets with torch.save,
                            then command line sbs can be used to look for discrepancies.
    
    If the model id is specified, one untrained version of it is instantiated.
    Examples:
    
    python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
        --run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
        --dtype float16 --device cuda --patch --export onnx-dynamo --opt ir
    
    python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
        --run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
        --dtype float16 --device cuda --patch --export custom --opt default
    
    python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
        --run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
        --dtype float16 --device cuda --export modelbuilder
    
    position_ids is usually not needed, they can be removed by adding:
    
        --drop position_ids
    
    The behaviour may be modified compare the original configuration,
    the following argument can be rope_scaling to dynamic:
    
        --mop "rope_scaling={'rope_type': 'dynamic', 'factor': 10.0}""
    
    You can profile the command line by running:
    
        pyinstrument -m onnx_diagnostic validate ...
        pyinstrument -r html -o profile.html -m onnx_diagnostic validate ...

Get the list of supported tasks

The task are the same defined by HuggingFace. The tool only supports a subset of them.

python -m onnx_diagnostic validate
    -- list of supported tasks:
    MoE
    automatic-speech-recognition
    feature-extraction
    fill-mask
    image-classification
    image-text-to-text
    image-to-video
    mask-generation
    object-detection
    sentence-similarity
    summarization
    text-classification
    text-generation
    text-to-image
    text2text-generation
    zero-shot-image-classification

Get the default inputs for a specific task

This returns the dummy inputs for a specific task. There may be too many inputs. Only those the forward method defines are kept.

python -m onnx_diagnostic validate -t text-generation
    -- inputs
      + input_ids       : T7s2x3
      + attention_mask  : T7s2x33
      + position_ids    : T7s2x3
      + past_key_values : DynamicCache(key_cache=#4[T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16], value_cache=#4[T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16])
    -- dynamic_shapes
      + input_ids       : {0:DYN(batch),1:DYN(seq_length)}
      + attention_mask  : {0:DYN(batch),1:DYN(cache+seq)}
      + position_ids    : {0:DYN(batch),1:DYN(seq_length)}
      + past_key_values : #8[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]

Validate dummy inputs for a model

The dummy inputs may not work for this model and this task. The following command line checks that. It is no use to export if this fails.

python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1
    [validate_model] validate model id 'arnir0/Tiny-LLM'
    [validate_model] patch={'patch': True}
    [validate_model] get dummy inputs with input_options=None...
    [validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
    [validate_model] exporter=None, optimization=None
    [validate_model] dump_folder=None
    [validate_model] output_names=None
    [get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
    [get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
    [get_untrained_model_with_inputs] cls='LlamaConfig'
    [get_untrained_model_with_inputs] task='text-generation'
    [get_untrained_model_with_inputs] default config._attn_implementation=None
    [get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
    [get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] -- done(2) in 2.5320041459053755e-06s
    [get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(3) in 5.9549929574131966e-06s (model is <class 'NoneType'>)
    [get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(4) in 0.11247056499996688s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
    [get_untrained_model_with_inputs] use fct=<function get_inputs at 0x715dcc11e7a0>
    [get_untrained_model_with_inputs] model class='LlamaForCausalLM'
    [validate_model] --
    [validate_model] task=text-generation
    [validate_model] size=49.549072265625 Mb
    [validate_model] n_weights=12.988992 millions parameters
    [validate_model] +INPUT input_ids=T7s2x3
    [validate_model] +INPUT attention_mask=T7s2x33
    [validate_model] +INPUT position_ids=T7s2x3
    [validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
    [validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
    [validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
    [validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
    [validate_model] --
    [validate_model] -- run the model inputs='inputs'...
    [validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
    [validate_model] -- run the model inputs='inputs_prompt'...
    [validate_model] inputs_prompt=dict(input_ids:T7s1x11)
    [validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
    [validate_model] -- run the model inputs='inputs2'...
    [validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
    [validate_model] -- run the model inputs='inputs_empty_cache'...
    [validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
    [validate_model] -- run the model inputs='inputs_batch1'...
    [validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
    [validate_model] -- done (final)
    
    -- summary --
    :model_class,LlamaForCausalLM;
    :model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
    :model_config_class,LlamaConfig;
    :model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
    :model_id,arnir0/Tiny-LLM;
    :model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
    :model_inputs_options,;
    :model_module,transformers.models.llama.modeling_llama;
    :model_nweights,12988992;
    :model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
    :model_size,51955968;
    :model_subfolder,;
    :model_task,text-generation;
    :run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
    :run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
    :run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
    :run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
    :run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
    :second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
    :time_create_torch_model,0.11682348699832801;
    :time_preprocess_model_id,2.896995283663273e-06;
    :time_run,0.007487604001653381;
    :time_run22,0.0056863950012484565;
    :time_run2_batch1,0.00839372600603383;
    :time_run2_empty_cache,0.004638106998754665;
    :time_run2_prompt,0.004209217004245147;
    :time_total_validation_torch,0.03433271200628951;
    :version_date,2026-01-07T18:35:19;
    :version_device,;
    :version_do_run,True;
    :version_drop_input,None;
    :version_drop_inputs,[];
    :version_dtype,;
    :version_dump_folder,;
    :version_exporter,;
    :version_exporter_options,None;
    :version_input_options,None;
    :version_inputs2,1;
    :version_model_id,arnir0/Tiny-LLM;
    :version_model_options,None;
    :version_numpy,2.4.0;
    :version_onnx,1.21.0;
    :version_onnx_diagnostic,0.8.8;
    :version_onnx_ir,0.1.15;
    :version_onnxruntime,1.24.0;
    :version_onnxscript,?;
    :version_opset,18;
    :version_optimization,;
    :version_ortfusiontype,;
    :version_patch,{'patch': True};
    :version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
    :version_quiet,False;
    :version_rewrite,True;
    :version_runtime,onnxruntime;
    :version_same_as_pretrained,False;
    :version_scipy,1.16.2;
    :version_stop_if_static,0;
    :version_submodule,None;
    :version_torch,2.11.0.dev20260106+cu130;
    :version_transformers,5.0.0.dev0;
    :version_use_pretrained,False;

Validate and export a model

Exports a model given the task. Checks for discrepancies as well. The latency given are just for one run. It tells how long the benchmark runs but it is far from the latency measure we can get by running multiple times the same model.

python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export export-nostrict -o dump_models --patch
    [validate_model] dump into 'arnir0_Tiny-LLM/export-nostrict/op18'
    [validate_model] validate model id 'arnir0/Tiny-LLM'
    [validate_model] patch={'patch': True}
    [validate_model] get dummy inputs with input_options=None...
    [validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
    [validate_model] exporter='export-nostrict', optimization=None
    [validate_model] dump_folder='dump_models/arnir0_Tiny-LLM/export-nostrict/op18'
    [validate_model] output_names=None
    [get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
    [get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
    [get_untrained_model_with_inputs] cls='LlamaConfig'
    [get_untrained_model_with_inputs] task='text-generation'
    [get_untrained_model_with_inputs] default config._attn_implementation=None
    [get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
    [get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] -- done(2) in 1.8157996237277985e-05s
    [get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(3) in 2.144399331882596e-05s (model is <class 'NoneType'>)
    [get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(4) in 0.11493415299628396s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
    [get_untrained_model_with_inputs] use fct=<function get_inputs at 0x715dcc11e7a0>
    [get_untrained_model_with_inputs] model class='LlamaForCausalLM'
    [validate_model] --
    [validate_model] task=text-generation
    [validate_model] size=49.549072265625 Mb
    [validate_model] n_weights=12.988992 millions parameters
    [validate_model] +INPUT input_ids=T7s2x3
    [validate_model] +INPUT attention_mask=T7s2x33
    [validate_model] +INPUT position_ids=T7s2x3
    [validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
    [validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
    [validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
    [validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
    [validate_model] --
    [validate_model] -- run the model inputs='inputs'...
    [validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
    [validate_model] -- run the model inputs='inputs_prompt'...
    [validate_model] inputs_prompt=dict(input_ids:T7s1x11)
    [validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
    [validate_model] -- run the model inputs='inputs2'...
    [validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
    [validate_model] -- run the model inputs='inputs_empty_cache'...
    [validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
    [validate_model] -- run the model inputs='inputs_batch1'...
    [validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
    [validate_model] -- export the model with 'export-nostrict', optimization=None
    [validate_model] applies patches before exporting stop_if_static=0
    [validate_model] run patched model...
    [validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done (patched run)
    [validate_model] patched discrepancies=abs=0, rel=0, dev=0
    [call_torch_export_export] exporter='export-nostrict', strict=False, optimization=None
    [call_torch_export_export] args=()
    [call_torch_export_export] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [call_torch_export_export] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}])
    [call_torch_export_export] dynamic_shapes_export_export=dict(input_ids:{0:DYNAMIC,1:DYNAMIC},attention_mask:{0:DYNAMIC,1:DYNAMIC},position_ids:{0:DYNAMIC,1:DYNAMIC},past_key_values:#2[{0:DYNAMIC,2:DYNAMIC},{0:DYNAMIC,2:DYNAMIC}])
    [call_torch_export_export] export...
    [call_torch_export_export] done (export) with 162 nodes
    [validate_model] run exported model...
    [validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done (exported run)
    [validate_model] exported discrepancies=abs=0, rel=0, dev=0
    [validate_model] -- dumps exported program in 'dump_models/arnir0_Tiny-LLM/export-nostrict/op18'...
    [validate_model] done (dump ep)
    [validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM/export-nostrict/op18'...
    [validate_model] done (dump)
    [validate_model] -- done (final)
    
    -- summary --
    :disc_exported_abs,0;
    :disc_exported_dev,0;
    :disc_exported_dnan,0;
    :disc_exported_n,204672.0;
    :disc_exported_rel,0;
    :disc_exported_sum,0.0;
    :disc_patched_abs,0;
    :disc_patched_dev,0;
    :disc_patched_dnan,0;
    :disc_patched_n,204672.0;
    :disc_patched_rel,0;
    :disc_patched_sum,0.0;
    :dump_folder,dump_models/arnir0_Tiny-LLM/export-nostrict/op18;
    :dump_folder_name,arnir0_Tiny-LLM/export-nostrict/op18;
    :export_args,();
    :export_dynamic_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
    :export_dynamic_shapes_export_export,dict(input_ids:{0:DYNAMIC,1:DYNAMIC},attention_mask:{0:DYNAMIC,1:DYNAMIC},position_ids:{0:DYNAMIC,1:DYNAMIC},past_key_values:#2[{0:DYNAMIC,2:DYNAMIC},{0:DYNAMIC,2:DYNAMIC}]);
    :export_exporter,export-nostrict;
    :export_graph_nodes,162;
    :export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
    :export_optimization,;
    :export_options,{};
    :export_strict,False;
    :model_class,LlamaForCausalLM;
    :model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
    :model_config_class,LlamaConfig;
    :model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
    :model_id,arnir0/Tiny-LLM;
    :model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
    :model_inputs_options,;
    :model_module,transformers.models.llama.modeling_llama;
    :model_nweights,12988992;
    :model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
    :model_size,51955968;
    :model_subfolder,;
    :model_task,text-generation;
    :run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
    :run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
    :run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
    :run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
    :run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
    :second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
    :time_create_torch_model,0.12260157099808566;
    :time_export_export,1.4774449560063658;
    :time_preprocess_model_id,8.219998562708497e-06;
    :time_run,0.010878629007493146;
    :time_run22,0.003618180999183096;
    :time_run2_batch1,0.0026443100068718195;
    :time_run2_empty_cache,0.0026574599905870855;
    :time_run2_prompt,0.005115255000418983;
    :time_run_exported,0.0062425619980786;
    :time_run_patched,0.0027697810000972822;
    :time_torch_export_export,1.4774353609973332;
    :time_torch_export_export_n,1;
    :time_total_exporter,1.5288470230007078;
    :time_total_validation_torch,0.027251325998804532;
    :version_date,2026-01-07T18:35:19;
    :version_device,;
    :version_do_run,True;
    :version_drop_input,None;
    :version_drop_inputs,[];
    :version_dtype,;
    :version_dump_folder,dump_models;
    :version_exporter,export-nostrict;
    :version_exporter_options,None;
    :version_input_options,None;
    :version_inputs2,1;
    :version_model_id,arnir0/Tiny-LLM;
    :version_model_options,None;
    :version_numpy,2.4.0;
    :version_onnx,1.21.0;
    :version_onnx_diagnostic,0.8.8;
    :version_onnx_ir,0.1.15;
    :version_onnxruntime,1.24.0;
    :version_onnxscript,?;
    :version_opset,18;
    :version_optimization,;
    :version_ortfusiontype,;
    :version_patch,{'patch': True};
    :version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
    :version_quiet,False;
    :version_rewrite,True;
    :version_runtime,onnxruntime;
    :version_same_as_pretrained,False;
    :version_scipy,1.16.2;
    :version_stop_if_static,0;
    :version_submodule,None;
    :version_torch,2.11.0.dev20260106+cu130;
    :version_transformers,5.0.0.dev0;
    :version_use_pretrained,False;

Validate ONNX discrepancies

Let’s export with ONNX this time and checks for discrepancies.

python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export onnx-dynamo -o dump_models --patch --opt ir
    [validate_model] dump into 'arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
    [validate_model] validate model id 'arnir0/Tiny-LLM'
    [validate_model] patch={'patch': True}
    [validate_model] get dummy inputs with input_options=None...
    [validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
    [validate_model] exporter='onnx-dynamo', optimization='ir'
    [validate_model] dump_folder='dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
    [validate_model] output_names=None
    [get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
    [get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
    [get_untrained_model_with_inputs] cls='LlamaConfig'
    [get_untrained_model_with_inputs] task='text-generation'
    [get_untrained_model_with_inputs] default config._attn_implementation=None
    [get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
    [get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] -- done(2) in 2.3057000362314284e-05s
    [get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(3) in 6.818008841946721e-06s (model is <class 'NoneType'>)
    [get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(4) in 0.1615673940104898s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
    [get_untrained_model_with_inputs] use fct=<function get_inputs at 0x77540fc91800>
    [get_untrained_model_with_inputs] model class='LlamaForCausalLM'
    [validate_model] --
    [validate_model] task=text-generation
    [validate_model] size=49.549072265625 Mb
    [validate_model] n_weights=12.988992 millions parameters
    [validate_model] +INPUT input_ids=T7s2x3
    [validate_model] +INPUT attention_mask=T7s2x33
    [validate_model] +INPUT position_ids=T7s2x3
    [validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
    [validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
    [validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
    [validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
    [validate_model] --
    [validate_model] -- run the model inputs='inputs'...
    [validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
    [validate_model] -- run the model inputs='inputs_prompt'...
    [validate_model] inputs_prompt=dict(input_ids:T7s1x11)
    [validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
    [validate_model] -- run the model inputs='inputs2'...
    [validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
    [validate_model] -- run the model inputs='inputs_empty_cache'...
    [validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
    [validate_model] -- run the model inputs='inputs_batch1'...
    [validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
    [validate_model] -- export the model with 'onnx-dynamo', optimization='ir'
    [validate_model] applies patches before exporting stop_if_static=0
    [validate_model] run patched model...
    [validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done (patched run)
    [validate_model] patched discrepancies=abs=0, rel=0, dev=0
    [call_torch_export_onnx] exporter='onnx-dynamo', optimization='ir'
    [call_torch_export_onnx] args=()
    [call_torch_export_onnx] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [call_torch_export_onnx] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}])
    [call_torch_export_onnx] export...
    [call_torch_export_onnx] export_export_kwargs=dict(dynamo:bool,dynamic_shapes:dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]),opset_version:int)
    [torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`...
    [torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`... ✅
    [torch.onnx] Run decomposition...
    [torch.onnx] Run decomposition... ✅
    [torch.onnx] Translate the graph into ONNX...
    [torch.onnx] Translate the graph into ONNX... ✅
    Applied 34 of general pattern rewrite rules.
    [call_torch_export_onnx] done (export)
    [call_torch_export_onnx] starts optimization='ir'...
    [call_torch_export_onnx] done (optimization)
    [validate_model] dumps onnx program in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
    [validate_model] done (dump onnx) in 0.1903645700076595
    [validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
    [validate_model] done (dump)
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour=None
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour=None
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
    [validate_model] -- done (final)
    
    -- summary --
    :disc_onnx_ort_run22_abs,8.344650268554688e-07;
    :disc_onnx_ort_run22_dev,0;
    :disc_onnx_ort_run22_dnan,0;
    :disc_onnx_ort_run22_n,404160.0;
    :disc_onnx_ort_run22_rel,0.0003670204921167059;
    :disc_onnx_ort_run22_sum,0.037561870639599704;
    :disc_onnx_ort_run2_batch1_abs,9.5367431640625e-07;
    :disc_onnx_ort_run2_batch1_dev,0;
    :disc_onnx_ort_run2_batch1_dnan,0;
    :disc_onnx_ort_run2_batch1_n,102336.0;
    :disc_onnx_ort_run2_batch1_rel,0.00030987364736661046;
    :disc_onnx_ort_run2_batch1_sum,0.011194461939794564;
    :disc_onnx_ort_run2_empty_cache_abs,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_dev,0;
    :disc_onnx_ort_run2_empty_cache_dnan,0;
    :disc_onnx_ort_run2_empty_cache_n,193152.0;
    :disc_onnx_ort_run2_empty_cache_rel,0.00028247341543503955;
    :disc_onnx_ort_run2_empty_cache_sum,0.01621216703074424;
    :disc_onnx_ort_run_abs,7.748603820800781e-07;
    :disc_onnx_ort_run_dev,0;
    :disc_onnx_ort_run_dnan,0;
    :disc_onnx_ort_run_n,204672.0;
    :disc_onnx_ort_run_rel,0.00044309172106863606;
    :disc_onnx_ort_run_sum,0.02031988672524676;
    :disc_patched_abs,0;
    :disc_patched_dev,0;
    :disc_patched_dnan,0;
    :disc_patched_n,204672.0;
    :disc_patched_rel,0;
    :disc_patched_sum,0.0;
    :dump_folder,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
    :dump_folder_name,arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
    :export_args,();
    :export_dynamo,True;
    :export_exporter,{};
    :export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
    :export_opset,18;
    :export_optimization,ir;
    :model_class,LlamaForCausalLM;
    :model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
    :model_config_class,LlamaConfig;
    :model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
    :model_id,arnir0/Tiny-LLM;
    :model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
    :model_inputs_options,;
    :model_module,transformers.models.llama.modeling_llama;
    :model_nweights,12988992;
    :model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
    :model_size,51955968;
    :model_subfolder,;
    :model_task,text-generation;
    :n_node_Add,12;
    :n_node_And,2;
    :n_node_Cast,2;
    :n_node_Concat,16;
    :n_node_Cos,1;
    :n_node_Expand,6;
    :n_node_Gather,1;
    :n_node_GatherND,1;
    :n_node_IsNaN,1;
    :n_node_LessOrEqual,1;
    :n_node_MatMul,11;
    :n_node_Max,2;
    :n_node_Mul,14;
    :n_node_Neg,2;
    :n_node_Pow,3;
    :n_node_Range,3;
    :n_node_Reciprocal,3;
    :n_node_ReduceMean,3;
    :n_node_Reshape,11;
    :n_node_Shape,7;
    :n_node_Sigmoid,1;
    :n_node_Sin,1;
    :n_node_Slice,8;
    :n_node_Softmax,1;
    :n_node_Sqrt,3;
    :n_node_Squeeze,5;
    :n_node_Transpose,6;
    :n_node_Unsqueeze,13;
    :n_node_Where,2;
    :n_node_functions,0;
    :n_node_initializer_1,16;
    :n_node_initializer_7,14;
    :n_node_initializer_9,1;
    :n_node_nodes,142;
    :n_node_nodes_nocst,142;
    :onnx_filename,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.onnx;
    :onnx_ort_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs22,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs2_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_size,211748;
    :run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
    :run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
    :run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
    :run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
    :run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
    :run_feeds_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :run_feeds_inputs2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :run_feeds_inputs_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :run_feeds_inputs_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :run_output_inputs,#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96];
    :run_output_inputs2,#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96];
    :run_output_inputs_batch1,#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96];
    :run_output_inputs_empty_cache,#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96];
    :second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
    :time_create_onnx_ort,0.050719778999336995;
    :time_create_torch_model,0.2197248220036272;
    :time_export_onnx,5.3727518300001975;
    :time_export_onnx_opt_ir,0.04518510999332648;
    :time_onnx_save,0.1903645700076595;
    :time_preprocess_model_id,3.9669976104050875e-06;
    :time_run,0.00884727100492455;
    :time_run22,0.005331152002327144;
    :time_run2_batch1,0.0032888590067159384;
    :time_run2_empty_cache,0.0037600179930450395;
    :time_run2_prompt,0.008917002996895462;
    :time_run_onnx_ort,0.011284875989076681;
    :time_run_onnx_ort22,0.0023116890079109;
    :time_run_onnx_ort2_batch1,0.0015152620035223663;
    :time_run_onnx_ort2_empty_cache,0.0014897149958414957;
    :time_run_patched,0.01713825399929192;
    :time_torch_export_export,2.0159364200080745;
    :time_torch_export_export_n,1;
    :time_total,7.231304164000903;
    :time_total_exporter,6.422963395991246;
    :time_total_validation_onnx,0.11245336700812913;
    :time_total_validation_torch,0.0334918629960157;
    :version_date,2026-01-07T18:35:30;
    :version_device,;
    :version_do_run,True;
    :version_drop_input,None;
    :version_drop_inputs,[];
    :version_dtype,;
    :version_dump_folder,dump_models;
    :version_exporter,onnx-dynamo;
    :version_exporter_options,None;
    :version_input_options,None;
    :version_inputs2,1;
    :version_model_id,arnir0/Tiny-LLM;
    :version_model_options,None;
    :version_numpy,2.4.0;
    :version_onnx,1.21.0;
    :version_onnx_diagnostic,0.8.8;
    :version_onnx_ir,0.1.15;
    :version_onnxruntime,1.24.0;
    :version_onnxscript,?;
    :version_opset,18;
    :version_optimization,ir;
    :version_ortfusiontype,;
    :version_patch,{'patch': True};
    :version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
    :version_quiet,False;
    :version_rewrite,True;
    :version_runtime,onnxruntime;
    :version_same_as_pretrained,False;
    :version_scipy,1.16.2;
    :version_stop_if_static,0;
    :version_submodule,None;
    :version_torch,2.11.0.dev20260106+cu130;
    :version_transformers,5.0.0.dev0;
    :version_use_pretrained,False;
    [runpythonerror]
    W0107 18:35:31.801000 353538 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'input' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0, sampling_ratio: 'int' = -1, aligned: 'bool' = False). Treating as an Input.
    W0107 18:35:31.802000 353538 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'boxes' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0, sampling_ratio: 'int' = -1, aligned: 'bool' = False). Treating as an Input.
    W0107 18:35:31.803000 353538 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'input' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0). Treating as an Input.
    W0107 18:35:31.803000 353538 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'boxes' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0). Treating as an Input.
    /usr/lib/python3.12/copyreg.py:99: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
      return cls.__new__(cls, *args)
    ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_onnx_program.py:460: UserWarning: # The axis name: batch will not be used, since it shares the same shape constraints with another axis: batch.
      rename_mapping = _dynamic_shapes.create_rename_mapping(

Run onnxruntime fusions

This option runs transformers optimizations implemented in onnxruntime. The list of supported model_type can be found in the documentation of function onnx_diagnostic.torch_models.validate.run_ort_fusion().

python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export onnx-dynamo -o dump_models --patch --opt ir --ortfusiontype ALL
    [validate_model] dump into 'arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
    [validate_model] validate model id 'arnir0/Tiny-LLM'
    [validate_model] patch={'patch': True}
    [validate_model] get dummy inputs with input_options=None...
    [validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
    [validate_model] exporter='onnx-dynamo', optimization='ir'
    [validate_model] dump_folder='dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
    [validate_model] output_names=None
    [get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
    [get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
    [get_untrained_model_with_inputs] cls='LlamaConfig'
    [get_untrained_model_with_inputs] task='text-generation'
    [get_untrained_model_with_inputs] default config._attn_implementation=None
    [get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
    [get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
    [get_untrained_model_with_inputs] -- done(2) in 2.556100662332028e-05s
    [get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(3) in 1.012999564409256e-05s (model is <class 'NoneType'>)
    [get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
    [get_untrained_model_with_inputs] -- done(4) in 0.13792194599227514s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
    [get_untrained_model_with_inputs] use fct=<function get_inputs at 0x7cfd9d291940>
    [get_untrained_model_with_inputs] model class='LlamaForCausalLM'
    [validate_model] --
    [validate_model] task=text-generation
    [validate_model] size=49.549072265625 Mb
    [validate_model] n_weights=12.988992 millions parameters
    [validate_model] +INPUT input_ids=T7s2x3
    [validate_model] +INPUT attention_mask=T7s2x33
    [validate_model] +INPUT position_ids=T7s2x3
    [validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
    [validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
    [validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
    [validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
    [validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
    [validate_model] --
    [validate_model] -- run the model inputs='inputs'...
    [validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
    [validate_model] -- run the model inputs='inputs_prompt'...
    [validate_model] inputs_prompt=dict(input_ids:T7s1x11)
    [validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
    [validate_model] -- run the model inputs='inputs2'...
    [validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
    [validate_model] -- run the model inputs='inputs_empty_cache'...
    [validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
    [validate_model] -- run the model inputs='inputs_batch1'...
    [validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
    [validate_model] -- export the model with 'onnx-dynamo', optimization='ir'
    [validate_model] applies patches before exporting stop_if_static=0
    [validate_model] run patched model...
    [validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_model] done (patched run)
    [validate_model] patched discrepancies=abs=0, rel=0, dev=0
    [call_torch_export_onnx] exporter='onnx-dynamo', optimization='ir'
    [call_torch_export_onnx] args=()
    [call_torch_export_onnx] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [call_torch_export_onnx] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}])
    [call_torch_export_onnx] export...
    [call_torch_export_onnx] export_export_kwargs=dict(dynamo:bool,dynamic_shapes:dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]),opset_version:int)
    [torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`...
    [torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`... ✅
    [torch.onnx] Run decomposition...
    [torch.onnx] Run decomposition... ✅
    [torch.onnx] Translate the graph into ONNX...
    [torch.onnx] Translate the graph into ONNX... ✅
    Applied 34 of general pattern rewrite rules.
    [call_torch_export_onnx] done (export)
    [call_torch_export_onnx] starts optimization='ir'...
    [call_torch_export_onnx] done (optimization)
    [validate_model] dumps onnx program in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
    [validate_model] done (dump onnx) in 0.20745584600081202
    [validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
    [validate_model] done (dump)
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour=None
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour=None
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'bart'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'bart' in 0.21606902799976524, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bart.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbart'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortbart'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'bert'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'bert' in 0.19794437500240747, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortbert'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'bert_keras'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'bert_keras' in 0.20941918100288603, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_keras.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert_keras'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortbert_keras'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'bert_tf'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'bert_tf' in 0.262281991992495, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_tf.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert_tf'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortbert_tf'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'clip'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'clip' in 0.22453226799552795, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.clip.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortclip'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortclip'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'conformer'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'conformer' in 0.24911763799900655, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.conformer.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortconformer'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortconformer'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'gpt2'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'gpt2' in 0.23665851799887605, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt2'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortgpt2'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'gpt2_tf'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'gpt2_tf' in 0.23361249100707937, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2_tf.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt2_tf'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortgpt2_tf'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'gpt_neox'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'gpt_neox' in 0.22376702299516182, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt_neox.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt_neox'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortgpt_neox'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'mmdit'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'mmdit' in 0.24017480100155808, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.mmdit.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortmmdit'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortmmdit'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'phi'
    [validate_model] done 'phi' in 0.06268122399342246, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx'
    [validate_onnx_model] missing 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx'
    [validate_model] run onnxruntime fusion for 'sam2'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'sam2' in 0.19184638500155415, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.sam2.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortsam2'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortsam2'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'swin'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'swin' in 0.12536292898585089, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.swin.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortswin'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortswin'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 't5'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 't5' in 0.22631653599091806, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.t5.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortt5'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortt5'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'tnlr'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'tnlr' in 0.17421790500520729, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.tnlr.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='orttnlr'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='orttnlr'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'unet'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'unet' in 0.17008233899832703, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.unet.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortunet'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortunet'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'vae'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'vae' in 0.20482638099929318, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vae.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortvae'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortvae'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
    [validate_model] run onnxruntime fusion for 'vit'
    failed in shape inference <class 'AssertionError'>
    [validate_model] done 'vit' in 0.3282203399867285, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vit.onnx'
    [validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortvit'
    [validate_onnx_model] runtime is onnxruntime
    [validate_onnx_model] done (ort_session) flavour='ortvit'
    [validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
    [validate_onnx_model] -- make_feeds for 'inputs'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
    [validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs2'...
    [validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs22'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
    [validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
    [validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
    [validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
    [validate_onnx_model] -- make_feeds for 'inputs_batch1'...
    [validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
    [validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
    [validate_onnx_model] done (make_feeds)
    [validate_onnx_model] run session on inputs 'inputs2_batch1'...
    [validate_onnx_model] done (run)
    [validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
    [validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
    [validate_model] -- done (final)
    
    -- summary --
    :ERR_onnx_missing_ortphi,FileNotFoundError('dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx');
    :ERR_opt_ort_phi,'method' object is not iterable;
    :disc_onnx_ort_run22_abs,8.344650268554688e-07;
    :disc_onnx_ort_run22_abs_ortbart,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortbert,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortbert_keras,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortbert_tf,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortclip,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortconformer,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortgpt2,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortgpt2_tf,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortgpt_neox,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortmmdit,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortsam2,8.344650268554688e-07;
    :disc_onnx_ort_run22_abs_ortswin,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortt5,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_orttnlr,9.5367431640625e-07;
    :disc_onnx_ort_run22_abs_ortunet,8.344650268554688e-07;
    :disc_onnx_ort_run22_abs_ortvae,8.344650268554688e-07;
    :disc_onnx_ort_run22_abs_ortvit,9.5367431640625e-07;
    :disc_onnx_ort_run22_dev,0;
    :disc_onnx_ort_run22_dev_ortbart,0;
    :disc_onnx_ort_run22_dev_ortbert,0;
    :disc_onnx_ort_run22_dev_ortbert_keras,0;
    :disc_onnx_ort_run22_dev_ortbert_tf,0;
    :disc_onnx_ort_run22_dev_ortclip,0;
    :disc_onnx_ort_run22_dev_ortconformer,0;
    :disc_onnx_ort_run22_dev_ortgpt2,0;
    :disc_onnx_ort_run22_dev_ortgpt2_tf,0;
    :disc_onnx_ort_run22_dev_ortgpt_neox,0;
    :disc_onnx_ort_run22_dev_ortmmdit,0;
    :disc_onnx_ort_run22_dev_ortsam2,0;
    :disc_onnx_ort_run22_dev_ortswin,0;
    :disc_onnx_ort_run22_dev_ortt5,0;
    :disc_onnx_ort_run22_dev_orttnlr,0;
    :disc_onnx_ort_run22_dev_ortunet,0;
    :disc_onnx_ort_run22_dev_ortvae,0;
    :disc_onnx_ort_run22_dev_ortvit,0;
    :disc_onnx_ort_run22_dnan,0;
    :disc_onnx_ort_run22_dnan_ortbart,0;
    :disc_onnx_ort_run22_dnan_ortbert,0;
    :disc_onnx_ort_run22_dnan_ortbert_keras,0;
    :disc_onnx_ort_run22_dnan_ortbert_tf,0;
    :disc_onnx_ort_run22_dnan_ortclip,0;
    :disc_onnx_ort_run22_dnan_ortconformer,0;
    :disc_onnx_ort_run22_dnan_ortgpt2,0;
    :disc_onnx_ort_run22_dnan_ortgpt2_tf,0;
    :disc_onnx_ort_run22_dnan_ortgpt_neox,0;
    :disc_onnx_ort_run22_dnan_ortmmdit,0;
    :disc_onnx_ort_run22_dnan_ortsam2,0;
    :disc_onnx_ort_run22_dnan_ortswin,0;
    :disc_onnx_ort_run22_dnan_ortt5,0;
    :disc_onnx_ort_run22_dnan_orttnlr,0;
    :disc_onnx_ort_run22_dnan_ortunet,0;
    :disc_onnx_ort_run22_dnan_ortvae,0;
    :disc_onnx_ort_run22_dnan_ortvit,0;
    :disc_onnx_ort_run22_n,404160.0;
    :disc_onnx_ort_run22_n_ortbart,404160.0;
    :disc_onnx_ort_run22_n_ortbert,404160.0;
    :disc_onnx_ort_run22_n_ortbert_keras,404160.0;
    :disc_onnx_ort_run22_n_ortbert_tf,404160.0;
    :disc_onnx_ort_run22_n_ortclip,404160.0;
    :disc_onnx_ort_run22_n_ortconformer,404160.0;
    :disc_onnx_ort_run22_n_ortgpt2,404160.0;
    :disc_onnx_ort_run22_n_ortgpt2_tf,404160.0;
    :disc_onnx_ort_run22_n_ortgpt_neox,404160.0;
    :disc_onnx_ort_run22_n_ortmmdit,404160.0;
    :disc_onnx_ort_run22_n_ortsam2,404160.0;
    :disc_onnx_ort_run22_n_ortswin,404160.0;
    :disc_onnx_ort_run22_n_ortt5,404160.0;
    :disc_onnx_ort_run22_n_orttnlr,404160.0;
    :disc_onnx_ort_run22_n_ortunet,404160.0;
    :disc_onnx_ort_run22_n_ortvae,404160.0;
    :disc_onnx_ort_run22_n_ortvit,404160.0;
    :disc_onnx_ort_run22_rel,0.0003670204921167059;
    :disc_onnx_ort_run22_rel_ortbart,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortbert,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortbert_keras,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortbert_tf,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortclip,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortconformer,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortgpt2,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortgpt2_tf,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortgpt_neox,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortmmdit,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortsam2,0.0003670204921167059;
    :disc_onnx_ort_run22_rel_ortswin,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortt5,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_orttnlr,0.00033374451371688606;
    :disc_onnx_ort_run22_rel_ortunet,0.0003670204921167059;
    :disc_onnx_ort_run22_rel_ortvae,0.0003670204921167059;
    :disc_onnx_ort_run22_rel_ortvit,0.00033374451371688606;
    :disc_onnx_ort_run22_sum,0.037561870639599704;
    :disc_onnx_ort_run22_sum_ortbart,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortbert,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortbert_keras,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortbert_tf,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortclip,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortconformer,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortgpt2,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortgpt2_tf,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortgpt_neox,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortmmdit,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortsam2,0.037561870639599704;
    :disc_onnx_ort_run22_sum_ortswin,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortt5,0.04027932227860731;
    :disc_onnx_ort_run22_sum_orttnlr,0.04027932227860731;
    :disc_onnx_ort_run22_sum_ortunet,0.037561870639599704;
    :disc_onnx_ort_run22_sum_ortvae,0.037561870639599704;
    :disc_onnx_ort_run22_sum_ortvit,0.04027932227860731;
    :disc_onnx_ort_run2_batch1_abs,9.5367431640625e-07;
    :disc_onnx_ort_run2_batch1_abs_ortbart,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortbert,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortbert_keras,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortbert_tf,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortclip,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortconformer,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortgpt2,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortgpt2_tf,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortgpt_neox,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortmmdit,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortsam2,9.5367431640625e-07;
    :disc_onnx_ort_run2_batch1_abs_ortswin,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortt5,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_orttnlr,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_abs_ortunet,9.5367431640625e-07;
    :disc_onnx_ort_run2_batch1_abs_ortvae,9.5367431640625e-07;
    :disc_onnx_ort_run2_batch1_abs_ortvit,1.1324882507324219e-06;
    :disc_onnx_ort_run2_batch1_dev,0;
    :disc_onnx_ort_run2_batch1_dev_ortbart,0;
    :disc_onnx_ort_run2_batch1_dev_ortbert,0;
    :disc_onnx_ort_run2_batch1_dev_ortbert_keras,0;
    :disc_onnx_ort_run2_batch1_dev_ortbert_tf,0;
    :disc_onnx_ort_run2_batch1_dev_ortclip,0;
    :disc_onnx_ort_run2_batch1_dev_ortconformer,0;
    :disc_onnx_ort_run2_batch1_dev_ortgpt2,0;
    :disc_onnx_ort_run2_batch1_dev_ortgpt2_tf,0;
    :disc_onnx_ort_run2_batch1_dev_ortgpt_neox,0;
    :disc_onnx_ort_run2_batch1_dev_ortmmdit,0;
    :disc_onnx_ort_run2_batch1_dev_ortsam2,0;
    :disc_onnx_ort_run2_batch1_dev_ortswin,0;
    :disc_onnx_ort_run2_batch1_dev_ortt5,0;
    :disc_onnx_ort_run2_batch1_dev_orttnlr,0;
    :disc_onnx_ort_run2_batch1_dev_ortunet,0;
    :disc_onnx_ort_run2_batch1_dev_ortvae,0;
    :disc_onnx_ort_run2_batch1_dev_ortvit,0;
    :disc_onnx_ort_run2_batch1_dnan,0;
    :disc_onnx_ort_run2_batch1_dnan_ortbart,0;
    :disc_onnx_ort_run2_batch1_dnan_ortbert,0;
    :disc_onnx_ort_run2_batch1_dnan_ortbert_keras,0;
    :disc_onnx_ort_run2_batch1_dnan_ortbert_tf,0;
    :disc_onnx_ort_run2_batch1_dnan_ortclip,0;
    :disc_onnx_ort_run2_batch1_dnan_ortconformer,0;
    :disc_onnx_ort_run2_batch1_dnan_ortgpt2,0;
    :disc_onnx_ort_run2_batch1_dnan_ortgpt2_tf,0;
    :disc_onnx_ort_run2_batch1_dnan_ortgpt_neox,0;
    :disc_onnx_ort_run2_batch1_dnan_ortmmdit,0;
    :disc_onnx_ort_run2_batch1_dnan_ortsam2,0;
    :disc_onnx_ort_run2_batch1_dnan_ortswin,0;
    :disc_onnx_ort_run2_batch1_dnan_ortt5,0;
    :disc_onnx_ort_run2_batch1_dnan_orttnlr,0;
    :disc_onnx_ort_run2_batch1_dnan_ortunet,0;
    :disc_onnx_ort_run2_batch1_dnan_ortvae,0;
    :disc_onnx_ort_run2_batch1_dnan_ortvit,0;
    :disc_onnx_ort_run2_batch1_n,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortbart,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortbert,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortbert_keras,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortbert_tf,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortclip,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortconformer,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortgpt2,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortgpt2_tf,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortgpt_neox,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortmmdit,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortsam2,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortswin,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortt5,102336.0;
    :disc_onnx_ort_run2_batch1_n_orttnlr,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortunet,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortvae,102336.0;
    :disc_onnx_ort_run2_batch1_n_ortvit,102336.0;
    :disc_onnx_ort_run2_batch1_rel,0.00030987364736661046;
    :disc_onnx_ort_run2_batch1_rel_ortbart,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortbert,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortbert_keras,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortbert_tf,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortclip,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortconformer,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortgpt2,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortgpt2_tf,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortgpt_neox,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortmmdit,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortsam2,0.00030987364736661046;
    :disc_onnx_ort_run2_batch1_rel_ortswin,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortt5,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_orttnlr,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_rel_ortunet,0.00030987364736661046;
    :disc_onnx_ort_run2_batch1_rel_ortvae,0.00030987364736661046;
    :disc_onnx_ort_run2_batch1_rel_ortvit,0.00031306966585304286;
    :disc_onnx_ort_run2_batch1_sum,0.011194461939794564;
    :disc_onnx_ort_run2_batch1_sum_ortbart,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortbert,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortbert_keras,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortbert_tf,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortclip,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortconformer,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortgpt2,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortgpt2_tf,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortgpt_neox,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortmmdit,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortsam2,0.011194461939794564;
    :disc_onnx_ort_run2_batch1_sum_ortswin,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortt5,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_orttnlr,0.011881725947318955;
    :disc_onnx_ort_run2_batch1_sum_ortunet,0.011194461939794564;
    :disc_onnx_ort_run2_batch1_sum_ortvae,0.011194461939794564;
    :disc_onnx_ort_run2_batch1_sum_ortvit,0.011881725947318955;
    :disc_onnx_ort_run2_empty_cache_abs,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortbart,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortbert,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortbert_keras,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortbert_tf,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortclip,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortconformer,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortgpt2,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortgpt2_tf,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortgpt_neox,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortmmdit,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortsam2,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortswin,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortt5,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_orttnlr,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortunet,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortvae,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_abs_ortvit,7.152557373046875e-07;
    :disc_onnx_ort_run2_empty_cache_dev,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortbart,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortbert,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortbert_keras,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortbert_tf,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortclip,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortconformer,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortgpt2,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortgpt2_tf,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortgpt_neox,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortmmdit,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortsam2,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortswin,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortt5,0;
    :disc_onnx_ort_run2_empty_cache_dev_orttnlr,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortunet,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortvae,0;
    :disc_onnx_ort_run2_empty_cache_dev_ortvit,0;
    :disc_onnx_ort_run2_empty_cache_dnan,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortbart,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortbert,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortbert_keras,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortbert_tf,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortclip,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortconformer,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortgpt2,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortgpt2_tf,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortgpt_neox,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortmmdit,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortsam2,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortswin,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortt5,0;
    :disc_onnx_ort_run2_empty_cache_dnan_orttnlr,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortunet,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortvae,0;
    :disc_onnx_ort_run2_empty_cache_dnan_ortvit,0;
    :disc_onnx_ort_run2_empty_cache_n,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortbart,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortbert,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortbert_keras,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortbert_tf,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortclip,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortconformer,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortgpt2,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortgpt2_tf,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortgpt_neox,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortmmdit,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortsam2,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortswin,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortt5,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_orttnlr,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortunet,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortvae,193152.0;
    :disc_onnx_ort_run2_empty_cache_n_ortvit,193152.0;
    :disc_onnx_ort_run2_empty_cache_rel,0.00028247341543503955;
    :disc_onnx_ort_run2_empty_cache_rel_ortbart,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortbert,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortbert_keras,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortbert_tf,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortclip,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortconformer,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortgpt2,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortgpt2_tf,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortgpt_neox,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortmmdit,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortsam2,0.00028247341543503955;
    :disc_onnx_ort_run2_empty_cache_rel_ortswin,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortt5,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_orttnlr,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_rel_ortunet,0.00028247341543503955;
    :disc_onnx_ort_run2_empty_cache_rel_ortvae,0.00028247341543503955;
    :disc_onnx_ort_run2_empty_cache_rel_ortvit,0.0002758755967644076;
    :disc_onnx_ort_run2_empty_cache_sum,0.01621216703074424;
    :disc_onnx_ort_run2_empty_cache_sum_ortbart,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortbert,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortbert_keras,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortbert_tf,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortclip,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortconformer,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortgpt2,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortgpt2_tf,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortgpt_neox,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortmmdit,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortsam2,0.01621216703074424;
    :disc_onnx_ort_run2_empty_cache_sum_ortswin,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortt5,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_orttnlr,0.01956161782959498;
    :disc_onnx_ort_run2_empty_cache_sum_ortunet,0.01621216703074424;
    :disc_onnx_ort_run2_empty_cache_sum_ortvae,0.01621216703074424;
    :disc_onnx_ort_run2_empty_cache_sum_ortvit,0.01956161782959498;
    :disc_onnx_ort_run_abs,7.748603820800781e-07;
    :disc_onnx_ort_run_abs_ortbart,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortbert,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortbert_keras,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortbert_tf,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortclip,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortconformer,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortgpt2,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortgpt2_tf,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortgpt_neox,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortmmdit,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortsam2,7.748603820800781e-07;
    :disc_onnx_ort_run_abs_ortswin,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortt5,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_orttnlr,8.344650268554688e-07;
    :disc_onnx_ort_run_abs_ortunet,7.748603820800781e-07;
    :disc_onnx_ort_run_abs_ortvae,7.748603820800781e-07;
    :disc_onnx_ort_run_abs_ortvit,8.344650268554688e-07;
    :disc_onnx_ort_run_dev,0;
    :disc_onnx_ort_run_dev_ortbart,0;
    :disc_onnx_ort_run_dev_ortbert,0;
    :disc_onnx_ort_run_dev_ortbert_keras,0;
    :disc_onnx_ort_run_dev_ortbert_tf,0;
    :disc_onnx_ort_run_dev_ortclip,0;
    :disc_onnx_ort_run_dev_ortconformer,0;
    :disc_onnx_ort_run_dev_ortgpt2,0;
    :disc_onnx_ort_run_dev_ortgpt2_tf,0;
    :disc_onnx_ort_run_dev_ortgpt_neox,0;
    :disc_onnx_ort_run_dev_ortmmdit,0;
    :disc_onnx_ort_run_dev_ortsam2,0;
    :disc_onnx_ort_run_dev_ortswin,0;
    :disc_onnx_ort_run_dev_ortt5,0;
    :disc_onnx_ort_run_dev_orttnlr,0;
    :disc_onnx_ort_run_dev_ortunet,0;
    :disc_onnx_ort_run_dev_ortvae,0;
    :disc_onnx_ort_run_dev_ortvit,0;
    :disc_onnx_ort_run_dnan,0;
    :disc_onnx_ort_run_dnan_ortbart,0;
    :disc_onnx_ort_run_dnan_ortbert,0;
    :disc_onnx_ort_run_dnan_ortbert_keras,0;
    :disc_onnx_ort_run_dnan_ortbert_tf,0;
    :disc_onnx_ort_run_dnan_ortclip,0;
    :disc_onnx_ort_run_dnan_ortconformer,0;
    :disc_onnx_ort_run_dnan_ortgpt2,0;
    :disc_onnx_ort_run_dnan_ortgpt2_tf,0;
    :disc_onnx_ort_run_dnan_ortgpt_neox,0;
    :disc_onnx_ort_run_dnan_ortmmdit,0;
    :disc_onnx_ort_run_dnan_ortsam2,0;
    :disc_onnx_ort_run_dnan_ortswin,0;
    :disc_onnx_ort_run_dnan_ortt5,0;
    :disc_onnx_ort_run_dnan_orttnlr,0;
    :disc_onnx_ort_run_dnan_ortunet,0;
    :disc_onnx_ort_run_dnan_ortvae,0;
    :disc_onnx_ort_run_dnan_ortvit,0;
    :disc_onnx_ort_run_n,204672.0;
    :disc_onnx_ort_run_n_ortbart,204672.0;
    :disc_onnx_ort_run_n_ortbert,204672.0;
    :disc_onnx_ort_run_n_ortbert_keras,204672.0;
    :disc_onnx_ort_run_n_ortbert_tf,204672.0;
    :disc_onnx_ort_run_n_ortclip,204672.0;
    :disc_onnx_ort_run_n_ortconformer,204672.0;
    :disc_onnx_ort_run_n_ortgpt2,204672.0;
    :disc_onnx_ort_run_n_ortgpt2_tf,204672.0;
    :disc_onnx_ort_run_n_ortgpt_neox,204672.0;
    :disc_onnx_ort_run_n_ortmmdit,204672.0;
    :disc_onnx_ort_run_n_ortsam2,204672.0;
    :disc_onnx_ort_run_n_ortswin,204672.0;
    :disc_onnx_ort_run_n_ortt5,204672.0;
    :disc_onnx_ort_run_n_orttnlr,204672.0;
    :disc_onnx_ort_run_n_ortunet,204672.0;
    :disc_onnx_ort_run_n_ortvae,204672.0;
    :disc_onnx_ort_run_n_ortvit,204672.0;
    :disc_onnx_ort_run_rel,0.00044309172106863606;
    :disc_onnx_ort_run_rel_ortbart,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortbert,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortbert_keras,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortbert_tf,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortclip,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortconformer,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortgpt2,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortgpt2_tf,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortgpt_neox,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortmmdit,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortsam2,0.00044309172106863606;
    :disc_onnx_ort_run_rel_ortswin,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortt5,0.00038373230338287646;
    :disc_onnx_ort_run_rel_orttnlr,0.00038373230338287646;
    :disc_onnx_ort_run_rel_ortunet,0.00044309172106863606;
    :disc_onnx_ort_run_rel_ortvae,0.00044309172106863606;
    :disc_onnx_ort_run_rel_ortvit,0.00038373230338287646;
    :disc_onnx_ort_run_sum,0.02031988672524676;
    :disc_onnx_ort_run_sum_ortbart,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortbert,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortbert_keras,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortbert_tf,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortclip,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortconformer,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortgpt2,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortgpt2_tf,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortgpt_neox,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortmmdit,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortsam2,0.02031988672524676;
    :disc_onnx_ort_run_sum_ortswin,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortt5,0.022044641082175076;
    :disc_onnx_ort_run_sum_orttnlr,0.022044641082175076;
    :disc_onnx_ort_run_sum_ortunet,0.02031988672524676;
    :disc_onnx_ort_run_sum_ortvae,0.02031988672524676;
    :disc_onnx_ort_run_sum_ortvit,0.022044641082175076;
    :disc_patched_abs,0;
    :disc_patched_dev,0;
    :disc_patched_dnan,0;
    :disc_patched_n,204672.0;
    :disc_patched_rel,0;
    :disc_patched_sum,0.0;
    :dump_folder,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
    :dump_folder_name,arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
    :export_args,();
    :export_dynamo,True;
    :export_exporter,{};
    :export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
    :export_opset,18;
    :export_optimization,ir;
    :model_class,LlamaForCausalLM;
    :model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
    :model_config_class,LlamaConfig;
    :model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
    :model_id,arnir0/Tiny-LLM;
    :model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
    :model_inputs_options,;
    :model_module,transformers.models.llama.modeling_llama;
    :model_nweights,12988992;
    :model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
    :model_size,51955968;
    :model_subfolder,;
    :model_task,text-generation;
    :n_node_Add,12;
    :n_node_And,2;
    :n_node_Cast,2;
    :n_node_Concat,16;
    :n_node_Cos,1;
    :n_node_Expand,6;
    :n_node_Gather,1;
    :n_node_GatherND,1;
    :n_node_IsNaN,1;
    :n_node_LessOrEqual,1;
    :n_node_MatMul,11;
    :n_node_Max,2;
    :n_node_Mul,14;
    :n_node_Neg,2;
    :n_node_Pow,3;
    :n_node_Range,3;
    :n_node_Reciprocal,3;
    :n_node_ReduceMean,3;
    :n_node_Reshape,11;
    :n_node_Shape,7;
    :n_node_Sigmoid,1;
    :n_node_Sin,1;
    :n_node_Slice,8;
    :n_node_Softmax,1;
    :n_node_Sqrt,3;
    :n_node_Squeeze,5;
    :n_node_Transpose,6;
    :n_node_Unsqueeze,13;
    :n_node_Where,2;
    :n_node_functions,0;
    :n_node_initializer_1,16;
    :n_node_initializer_7,14;
    :n_node_initializer_9,1;
    :n_node_nodes,142;
    :n_node_nodes_nocst,142;
    :onnx_filename,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.onnx;
    :onnx_filename_ortbart,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bart.onnx;
    :onnx_filename_ortbert,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert.onnx;
    :onnx_filename_ortbert_keras,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_keras.onnx;
    :onnx_filename_ortbert_tf,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_tf.onnx;
    :onnx_filename_ortclip,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.clip.onnx;
    :onnx_filename_ortconformer,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.conformer.onnx;
    :onnx_filename_ortgpt2,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2.onnx;
    :onnx_filename_ortgpt2_tf,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2_tf.onnx;
    :onnx_filename_ortgpt_neox,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt_neox.onnx;
    :onnx_filename_ortmmdit,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.mmdit.onnx;
    :onnx_filename_ortsam2,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.sam2.onnx;
    :onnx_filename_ortswin,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.swin.onnx;
    :onnx_filename_ortt5,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.t5.onnx;
    :onnx_filename_orttnlr,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.tnlr.onnx;
    :onnx_filename_ortunet,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.unet.onnx;
    :onnx_filename_ortvae,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vae.onnx;
    :onnx_filename_ortvit,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vit.onnx;
    :onnx_ort_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs22,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortbart,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortbert,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortbert_keras,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortbert_tf,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortclip,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortconformer,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortgpt2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortgpt2_tf,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortgpt_neox,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortmmdit,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortsam2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortswin,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortt5,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_orttnlr,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortunet,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortvae,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs22_ortvit,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :onnx_ort_inputs2_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortbart,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortbert,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortbert_keras,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortbert_tf,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortclip,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortconformer,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortgpt2,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortgpt2_tf,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortgpt_neox,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortmmdit,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortsam2,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortswin,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortt5,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_orttnlr,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortunet,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortvae,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_batch1_ortvit,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :onnx_ort_inputs2_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortbart,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortbert,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortbert_keras,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortbert_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortclip,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortconformer,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortgpt2,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortgpt2_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortgpt_neox,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortmmdit,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortsam2,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortswin,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortt5,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_orttnlr,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortunet,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortvae,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs2_empty_cache_ortvit,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :onnx_ort_inputs_ortbart,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortbert,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortbert_keras,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortbert_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortclip,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortconformer,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortgpt2,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortgpt2_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortgpt_neox,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortmmdit,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortsam2,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortswin,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortt5,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_orttnlr,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortunet,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortvae,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_ort_inputs_ortvit,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :onnx_size,211748;
    :onnx_size_ortbart,181195;
    :onnx_size_ortbert,181195;
    :onnx_size_ortbert_keras,181258;
    :onnx_size_ortbert_tf,181229;
    :onnx_size_ortclip,181195;
    :onnx_size_ortconformer,181247;
    :onnx_size_ortgpt2,181195;
    :onnx_size_ortgpt2_tf,181227;
    :onnx_size_ortgpt_neox,181236;
    :onnx_size_ortmmdit,181204;
    :onnx_size_ortsam2,212523;
    :onnx_size_ortswin,181195;
    :onnx_size_ortt5,181176;
    :onnx_size_orttnlr,181195;
    :onnx_size_ortunet,212523;
    :onnx_size_ortvae,212513;
    :onnx_size_ortvit,181185;
    :opt_ort_bart_delta_node,-18;
    :opt_ort_bart_duration,0.08813744700455572;
    :opt_ort_bart_duration_save,0.05110423899895977;
    :opt_ort_bart_n_nodes1,142;
    :opt_ort_bart_n_nodes2,124;
    :opt_ort_bert_delta_node,-18;
    :opt_ort_bert_duration,0.08644544599519577;
    :opt_ort_bert_duration_save,0.038078953002695926;
    :opt_ort_bert_keras_delta_node,-18;
    :opt_ort_bert_keras_duration,0.11229654800263233;
    :opt_ort_bert_keras_duration_save,0.07197840399749111;
    :opt_ort_bert_keras_n_nodes1,142;
    :opt_ort_bert_keras_n_nodes2,124;
    :opt_ort_bert_n_nodes1,142;
    :opt_ort_bert_n_nodes2,124;
    :opt_ort_bert_tf_delta_node,-18;
    :opt_ort_bert_tf_duration,0.08985659999598283;
    :opt_ort_bert_tf_duration_save,0.05080627300776541;
    :opt_ort_bert_tf_n_nodes1,142;
    :opt_ort_bert_tf_n_nodes2,124;
    :opt_ort_clip_delta_node,-18;
    :opt_ort_clip_duration,0.09953704099461902;
    :opt_ort_clip_duration_save,0.05686448900087271;
    :opt_ort_clip_n_nodes1,142;
    :opt_ort_clip_n_nodes2,124;
    :opt_ort_conformer_delta_node,-18;
    :opt_ort_conformer_duration,0.09751351500744931;
    :opt_ort_conformer_duration_save,0.054944736999459565;
    :opt_ort_conformer_n_nodes1,142;
    :opt_ort_conformer_n_nodes2,124;
    :opt_ort_gpt2_delta_node,-18;
    :opt_ort_gpt2_duration,0.10804799701145384;
    :opt_ort_gpt2_duration_save,0.06004854400816839;
    :opt_ort_gpt2_n_nodes1,142;
    :opt_ort_gpt2_n_nodes2,124;
    :opt_ort_gpt2_tf_delta_node,-18;
    :opt_ort_gpt2_tf_duration,0.09162741299951449;
    :opt_ort_gpt2_tf_duration_save,0.059553864994086325;
    :opt_ort_gpt2_tf_n_nodes1,142;
    :opt_ort_gpt2_tf_n_nodes2,124;
    :opt_ort_gpt_neox_delta_node,-18;
    :opt_ort_gpt_neox_duration,0.10149736700986978;
    :opt_ort_gpt_neox_duration_save,0.05151881399797276;
    :opt_ort_gpt_neox_n_nodes1,142;
    :opt_ort_gpt_neox_n_nodes2,124;
    :opt_ort_mmdit_delta_node,-18;
    :opt_ort_mmdit_duration,0.09257655100373086;
    :opt_ort_mmdit_duration_save,0.056421251996653154;
    :opt_ort_mmdit_n_nodes1,142;
    :opt_ort_mmdit_n_nodes2,124;
    :opt_ort_phi_duration,0.00012258101196493953;
    :opt_ort_sam2_delta_node,0;
    :opt_ort_sam2_duration,0.09094489700510167;
    :opt_ort_sam2_duration_save,0.04675138300808612;
    :opt_ort_sam2_n_nodes1,142;
    :opt_ort_sam2_n_nodes2,142;
    :opt_ort_swin_delta_node,-18;
    :opt_ort_swin_duration,0.04251616100373212;
    :opt_ort_swin_duration_save,0.0660886190016754;
    :opt_ort_swin_n_nodes1,142;
    :opt_ort_swin_n_nodes2,124;
    :opt_ort_t5_delta_node,-18;
    :opt_ort_t5_duration,0.1494075720111141;
    :opt_ort_t5_duration_save,0.05390276500838809;
    :opt_ort_t5_n_nodes1,142;
    :opt_ort_t5_n_nodes2,124;
    :opt_ort_tnlr_delta_node,-18;
    :opt_ort_tnlr_duration,0.07744833201286383;
    :opt_ort_tnlr_duration_save,0.0507472650060663;
    :opt_ort_tnlr_n_nodes1,142;
    :opt_ort_tnlr_n_nodes2,124;
    :opt_ort_unet_delta_node,0;
    :opt_ort_unet_duration,0.08042575100262184;
    :opt_ort_unet_duration_save,0.04876462400716264;
    :opt_ort_unet_n_nodes1,142;
    :opt_ort_unet_n_nodes2,142;
    :opt_ort_vae_delta_node,0;
    :opt_ort_vae_duration,0.08313445899693761;
    :opt_ort_vae_duration_save,0.0782772929960629;
    :opt_ort_vae_n_nodes1,142;
    :opt_ort_vae_n_nodes2,142;
    :opt_ort_vit_delta_node,-18;
    :opt_ort_vit_duration,0.16337777799344622;
    :opt_ort_vit_duration_save,0.0858130179985892;
    :opt_ort_vit_n_nodes1,142;
    :opt_ort_vit_n_nodes2,124;
    :run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
    :run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
    :run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
    :run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
    :run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
    :run_feeds_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
    :run_feeds_inputs2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
    :run_feeds_inputs_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
    :run_feeds_inputs_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
    :run_output_inputs,#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96];
    :run_output_inputs2,#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96];
    :run_output_inputs_batch1,#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96];
    :run_output_inputs_empty_cache,#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96];
    :second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
    :time_create_onnx_ort,0.12850658099341672;
    :time_create_onnx_ort_ortbart,0.026052041008369997;
    :time_create_onnx_ort_ortbert,0.033399764986825176;
    :time_create_onnx_ort_ortbert_keras,0.03491585700248834;
    :time_create_onnx_ort_ortbert_tf,0.02598324000427965;
    :time_create_onnx_ort_ortclip,0.03018168400740251;
    :time_create_onnx_ort_ortconformer,0.025789353996515274;
    :time_create_onnx_ort_ortgpt2,0.057301524007925764;
    :time_create_onnx_ort_ortgpt2_tf,0.03269636099867057;
    :time_create_onnx_ort_ortgpt_neox,0.030637372998171486;
    :time_create_onnx_ort_ortmmdit,0.029341079003643245;
    :time_create_onnx_ort_ortsam2,0.03767085300933104;
    :time_create_onnx_ort_ortswin,0.056206890993053094;
    :time_create_onnx_ort_ortt5,0.03820730300503783;
    :time_create_onnx_ort_orttnlr,0.04486137999629136;
    :time_create_onnx_ort_ortunet,0.03796954499557614;
    :time_create_onnx_ort_ortvae,0.036049347996595316;
    :time_create_onnx_ort_ortvit,0.06714143599674571;
    :time_create_torch_model,0.18619892100105062;
    :time_export_onnx,5.815392502991017;
    :time_export_onnx_opt_ir,0.04521281500637997;
    :time_onnx_save,0.20745584600081202;
    :time_ortfusion_ortbart,0.21606902799976524;
    :time_ortfusion_ortbert,0.19794437500240747;
    :time_ortfusion_ortbert_keras,0.20941918100288603;
    :time_ortfusion_ortbert_tf,0.262281991992495;
    :time_ortfusion_ortclip,0.22453226799552795;
    :time_ortfusion_ortconformer,0.24911763799900655;
    :time_ortfusion_ortgpt2,0.23665851799887605;
    :time_ortfusion_ortgpt2_tf,0.23361249100707937;
    :time_ortfusion_ortgpt_neox,0.22376702299516182;
    :time_ortfusion_ortmmdit,0.24017480100155808;
    :time_ortfusion_ortphi,0.06268122399342246;
    :time_ortfusion_ortsam2,0.19184638500155415;
    :time_ortfusion_ortswin,0.12536292898585089;
    :time_ortfusion_ortt5,0.22631653599091806;
    :time_ortfusion_orttnlr,0.17421790500520729;
    :time_ortfusion_ortunet,0.17008233899832703;
    :time_ortfusion_ortvae,0.20482638099929318;
    :time_ortfusion_ortvit,0.3282203399867285;
    :time_preprocess_model_id,1.4930119505152106e-06;
    :time_run,0.037207419009064324;
    :time_run22,0.004495057000895031;
    :time_run2_batch1,0.01725845198961906;
    :time_run2_empty_cache,0.014428932001465;
    :time_run2_prompt,0.003831251000519842;
    :time_run_onnx_ort,0.025807564990827814;
    :time_run_onnx_ort22,0.002507356010028161;
    :time_run_onnx_ort22_ortbart,0.0019783400057349354;
    :time_run_onnx_ort22_ortbert,0.002077490004012361;
    :time_run_onnx_ort22_ortbert_keras,0.00273991099675186;
    :time_run_onnx_ort22_ortbert_tf,0.0025747420004336163;
    :time_run_onnx_ort22_ortclip,0.0030382689874386415;
    :time_run_onnx_ort22_ortconformer,0.00300035800319165;
    :time_run_onnx_ort22_ortgpt2,0.0032651639921823516;
    :time_run_onnx_ort22_ortgpt2_tf,0.005810218004626222;
    :time_run_onnx_ort22_ortgpt_neox,0.002227760007372126;
    :time_run_onnx_ort22_ortmmdit,0.002178131995606236;
    :time_run_onnx_ort22_ortsam2,0.0035004520032089204;
    :time_run_onnx_ort22_ortswin,0.003795951997744851;
    :time_run_onnx_ort22_ortt5,0.003261256992118433;
    :time_run_onnx_ort22_orttnlr,0.006776914000511169;
    :time_run_onnx_ort22_ortunet,0.001961561996722594;
    :time_run_onnx_ort22_ortvae,0.007747145005851053;
    :time_run_onnx_ort22_ortvit,0.013416406000033021;
    :time_run_onnx_ort2_batch1,0.0012344610004220158;
    :time_run_onnx_ort2_batch1_ortbart,0.0012444109888747334;
    :time_run_onnx_ort2_batch1_ortbert,0.0019346059998497367;
    :time_run_onnx_ort2_batch1_ortbert_keras,0.0017131950007751584;
    :time_run_onnx_ort2_batch1_ortbert_tf,0.0018202069913968444;
    :time_run_onnx_ort2_batch1_ortclip,0.0013412170083029196;
    :time_run_onnx_ort2_batch1_ortconformer,0.0012910030054626986;
    :time_run_onnx_ort2_batch1_ortgpt2,0.002391583999269642;
    :time_run_onnx_ort2_batch1_ortgpt2_tf,0.0028347479965304956;
    :time_run_onnx_ort2_batch1_ortgpt_neox,0.0021904210007051006;
    :time_run_onnx_ort2_batch1_ortmmdit,0.0012487139902077615;
    :time_run_onnx_ort2_batch1_ortsam2,0.0012277039932087064;
    :time_run_onnx_ort2_batch1_ortswin,0.002554916005465202;
    :time_run_onnx_ort2_batch1_ortt5,0.001773286989191547;
    :time_run_onnx_ort2_batch1_orttnlr,0.0016929350094869733;
    :time_run_onnx_ort2_batch1_ortunet,0.001686699004494585;
    :time_run_onnx_ort2_batch1_ortvae,0.0026273440016666427;
    :time_run_onnx_ort2_batch1_ortvit,0.00164577599207405;
    :time_run_onnx_ort2_empty_cache,0.0015065249899635091;
    :time_run_onnx_ort2_empty_cache_ortbart,0.0013784160109935328;
    :time_run_onnx_ort2_empty_cache_ortbert,0.0020117120002396405;
    :time_run_onnx_ort2_empty_cache_ortbert_keras,0.0017315090080955997;
    :time_run_onnx_ort2_empty_cache_ortbert_tf,0.0014563199947588146;
    :time_run_onnx_ort2_empty_cache_ortclip,0.00283003700315021;
    :time_run_onnx_ort2_empty_cache_ortconformer,0.0043547509994823486;
    :time_run_onnx_ort2_empty_cache_ortgpt2,0.0050926399999298155;
    :time_run_onnx_ort2_empty_cache_ortgpt2_tf,0.004498522001085803;
    :time_run_onnx_ort2_empty_cache_ortgpt_neox,0.0017321040068054572;
    :time_run_onnx_ort2_empty_cache_ortmmdit,0.0016034439904615283;
    :time_run_onnx_ort2_empty_cache_ortsam2,0.0017606530018383637;
    :time_run_onnx_ort2_empty_cache_ortswin,0.0035378830070840195;
    :time_run_onnx_ort2_empty_cache_ortt5,0.005853733993717469;
    :time_run_onnx_ort2_empty_cache_orttnlr,0.011885963001986966;
    :time_run_onnx_ort2_empty_cache_ortunet,0.0030080599972279742;
    :time_run_onnx_ort2_empty_cache_ortvae,0.001743316010106355;
    :time_run_onnx_ort2_empty_cache_ortvit,0.005772842996520922;
    :time_run_onnx_ort_ortbart,0.0018144500063499436;
    :time_run_onnx_ort_ortbert,0.003531648006173782;
    :time_run_onnx_ort_ortbert_keras,0.0019555129983928055;
    :time_run_onnx_ort_ortbert_tf,0.0016752110095694661;
    :time_run_onnx_ort_ortclip,0.003259988996433094;
    :time_run_onnx_ort_ortconformer,0.0020914209890179336;
    :time_run_onnx_ort_ortgpt2,0.0024664380034664646;
    :time_run_onnx_ort_ortgpt2_tf,0.003095060004852712;
    :time_run_onnx_ort_ortgpt_neox,0.0020028930011903867;
    :time_run_onnx_ort_ortmmdit,0.0020985720038879663;
    :time_run_onnx_ort_ortsam2,0.0018435350066283718;
    :time_run_onnx_ort_ortswin,0.0023537220113212243;
    :time_run_onnx_ort_ortt5,0.006005150004057214;
    :time_run_onnx_ort_orttnlr,0.001941129012266174;
    :time_run_onnx_ort_ortunet,0.0021090520021971315;
    :time_run_onnx_ort_ortvae,0.003022985009010881;
    :time_run_onnx_ort_ortvit,0.0028736009990097955;
    :time_run_patched,0.024499651000951417;
    :time_torch_export_export,2.1697925879998365;
    :time_torch_export_export_n,1;
    :time_total,14.062450943994918;
    :time_total_exporter,7.582944724999834;
    :time_total_validation_onnx,0.2084885999938706;
    :time_total_validation_torch,0.08059406600659713;
    :version_date,2026-01-07T18:35:49;
    :version_device,;
    :version_do_run,True;
    :version_drop_input,None;
    :version_drop_inputs,[];
    :version_dtype,;
    :version_dump_folder,dump_models;
    :version_exporter,onnx-dynamo;
    :version_exporter_options,None;
    :version_input_options,None;
    :version_inputs2,1;
    :version_model_id,arnir0/Tiny-LLM;
    :version_model_options,None;
    :version_numpy,2.4.0;
    :version_onnx,1.21.0;
    :version_onnx_diagnostic,0.8.8;
    :version_onnx_ir,0.1.15;
    :version_onnxruntime,1.24.0;
    :version_onnxscript,?;
    :version_opset,18;
    :version_optimization,ir;
    :version_ortbart_hidden_size,192;
    :version_ortbart_num_attention_heads,2;
    :version_ortbert_hidden_size,192;
    :version_ortbert_keras_hidden_size,192;
    :version_ortbert_keras_num_attention_heads,2;
    :version_ortbert_num_attention_heads,2;
    :version_ortbert_tf_hidden_size,192;
    :version_ortbert_tf_num_attention_heads,2;
    :version_ortclip_hidden_size,192;
    :version_ortclip_num_attention_heads,2;
    :version_ortconformer_hidden_size,192;
    :version_ortconformer_num_attention_heads,2;
    :version_ortfusiontype,ALL;
    :version_ortgpt2_hidden_size,192;
    :version_ortgpt2_num_attention_heads,2;
    :version_ortgpt2_tf_hidden_size,192;
    :version_ortgpt2_tf_num_attention_heads,2;
    :version_ortgpt_neox_hidden_size,192;
    :version_ortgpt_neox_num_attention_heads,2;
    :version_ortmmdit_hidden_size,192;
    :version_ortmmdit_num_attention_heads,2;
    :version_ortphi_hidden_size,192;
    :version_ortphi_num_attention_heads,2;
    :version_ortsam2_hidden_size,192;
    :version_ortsam2_num_attention_heads,2;
    :version_ortswin_hidden_size,192;
    :version_ortswin_num_attention_heads,2;
    :version_ortt5_hidden_size,192;
    :version_ortt5_num_attention_heads,2;
    :version_orttnlr_hidden_size,192;
    :version_orttnlr_num_attention_heads,2;
    :version_ortunet_hidden_size,192;
    :version_ortunet_num_attention_heads,2;
    :version_ortvae_hidden_size,192;
    :version_ortvae_num_attention_heads,2;
    :version_ortvit_hidden_size,192;
    :version_ortvit_num_attention_heads,2;
    :version_patch,{'patch': True};
    :version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
    :version_quiet,False;
    :version_rewrite,True;
    :version_runtime,onnxruntime;
    :version_same_as_pretrained,False;
    :version_scipy,1.16.2;
    :version_stop_if_static,0;
    :version_submodule,None;
    :version_torch,2.11.0.dev20260106+cu130;
    :version_transformers,5.0.0.dev0;
    :version_use_pretrained,False;
    [runpythonerror]
    W0107 18:35:52.226000 353653 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'input' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0, sampling_ratio: 'int' = -1, aligned: 'bool' = False). Treating as an Input.
    W0107 18:35:52.229000 353653 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'boxes' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0, sampling_ratio: 'int' = -1, aligned: 'bool' = False). Treating as an Input.
    W0107 18:35:52.229000 353653 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'input' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0). Treating as an Input.
    W0107 18:35:52.229000 353653 torch/onnx/_internal/exporter/_schemas.py:456] Missing annotation for parameter 'boxes' from (input, boxes, output_size: 'Sequence[int]', spatial_scale: 'float' = 1.0). Treating as an Input.
    /usr/lib/python3.12/copyreg.py:99: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
      return cls.__new__(cls, *args)
    ~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_onnx_program.py:460: UserWarning: # The axis name: batch will not be used, since it shares the same shape constraints with another axis: batch.
      rename_mapping = _dynamic_shapes.create_rename_mapping(
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    Model producer not matched: Expected "keras2onnx", Got "pytorch".Please specify correct --model_type parameter.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    Model producer not matched: Expected "tf2onnx", Got "pytorch".Please specify correct --model_type parameter.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    Model producer not matched: Expected "tf2onnx", Got "pytorch".Please specify correct --model_type parameter.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    
fusion:   0%|          | 0/5 [00:00<?, ?it/s]
                                             
The optimized model requires LayerNormalization with broadcast support. Please use onnxruntime-gpu>=1.21 for inference.
    
fusion:  20%|██        | 1/5 [00:00<00:00, 12.82it/s]
fusion: 100%|██████████| 5/5 [00:00<00:00, 57.58it/s]
    
sam2 fusion:   0%|          | 0/12 [00:00<?, ?it/s]
                                                   
symbolic shape inference disabled or failed.
    
sam2 fusion:  50%|█████     | 6/12 [00:00<00:00, 74.92it/s]
sam2 fusion: 100%|██████████| 12/12 [00:00<00:00, 140.92it/s]
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.
    
fusion:   0%|          | 0/18 [00:00<?, ?it/s]
                                              
symbolic shape inference disabled or failed.
    
fusion:  50%|█████     | 9/18 [00:00<00:00, 134.39it/s]
                                                       
SkipGroupNorm fusion will be skipped since symbolic shape inference disabled or failed.
    
fusion:  67%|██████▋   | 12/18 [00:00<00:00, 174.19it/s]
fusion: 100%|██████████| 18/18 [00:00<00:00, 240.70it/s]
    
fusion:   0%|          | 0/18 [00:00<?, ?it/s]
                                              
symbolic shape inference disabled or failed.
    
fusion:  50%|█████     | 9/18 [00:00<00:00, 128.12it/s]
                                                       
SkipGroupNorm fusion will be skipped since symbolic shape inference disabled or failed.
    
fusion:  67%|██████▋   | 12/18 [00:00<00:00, 167.41it/s]
fusion: 100%|██████████| 18/18 [00:00<00:00, 234.15it/s]
    symbolic shape inference disabled or failed.
    symbolic shape inference disabled or failed.

SDPA or Eager implementation or Use a StaticCache

Add --mop cache_implementation=static --iop cls_cache=StaticCache to use a StaticCache instead of a DynamicCache (default). Add --mop attn_implementation=eager to explicitly select eager implementation for attention.

python -m onnx_diagnostic validate \
            -m google/gemma-2b \
            --run \
            -v 1 \
            --export custom \
            -o dump_test \
            --dtype float16 \
            --device cpu \
            --patch \
            --no-quiet \
            --opt default \
            --rewrite \
            --mop attn_implementation=eager \
            --mop cache_implementation=static \
            --iop cls_cache=StaticCache

Frequent examples used to test

python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --device cuda --dtype float16 -o dump_models --patch --opt default+onnxruntime --export custom

About the exporter ‘custom’

It used to investigate issues or scenarios. It is usually very strict and fails every time it falls in one unexpected situation. It call experimental_experiment.torch_interpreter.to_onnx(). Some useful environment variables to set before running the command line.

  • DROPPATTERN=<pattern1,patterns2,...>: do not apply those patterns when optimizing a model

  • DUMPPATTERNS=<folder>: dumps all matched and applied nodes when a pattern is applied

  • PATTERN=<pattern1,pattern2,...>: increase verbosity for specific patterns to understand why one pattern was not applied