-m onnx_diagnostic validate … validate a model id¶
The command line is a wrapper around function
onnx_diagnostic.torch_models.validate.validate_model().
Description¶
The command lines validate a model id available on HuggingFace but not only. It creates dummy inputs, runs the models on them, exports the model, measures the discrepancies…
usage: validate [-h] [-m MID] [-t TASK] [-e EXPORT] [--opt OPT] [-r | --run | --no-run] [-q | --quiet | --no-quiet] [--patch [PATCH ...]] [--rewrite | --no-rewrite]
[--stop-if-static STOP_IF_STATIC] [--same-as-trained | --no-same-as-trained] [--trained | --no-trained] [--inputs2 INPUTS2]
[--runtime {onnxruntime,torch,ref,orteval,orteval10}] [-o DUMP_FOLDER] [--drop DROP] [--opset OPSET] [--subfolder SUBFOLDER] [--ortfusiontype ORTFUSIONTYPE]
[-v VERBOSE] [--dtype DTYPE] [--device DEVICE] [--iop [KEY=VALUE ...]] [--mop [KEY=VALUE ...]] [--repeat REPEAT] [--warmup WARMUP] [--outnames OUTNAMES]
[--ort-logs | --no-ort-logs] [--quiet-input-sets QUIET_INPUT_SETS] [--expop [KEY=VALUE ...]] [--save-ep SAVE_EP]
Validates a model for a particular task given the model id.
It exports the model and then validates it by computing the discrepancies
on different input sets.
options:
-h, --help show this help message and exit
-m MID, --mid MID model id, usually <author>/<name>
-t TASK, --task TASK force the task to use
-e EXPORT, --export EXPORT
export the model with this exporter
--opt OPT optimization to apply after the export
-r, --run, --no-run Runs the model to check it runs.
-q, --quiet, --no-quiet
Catches exception, reports them in the summary.
--patch [PATCH ...] Applies patches before exporting, it can be a boolean
to enable to disable the patches or be more finetuned
(default is True). It is possible to disable patch for torch
by adding:
--patch "patch_sympy=False" --patch "patch_torch=False"
--rewrite, --no-rewrite
Applies rewrite before exporting.
--stop-if-static STOP_IF_STATIC
Raises an exception if a dynamic dimension becomes static.
--same-as-trained, --no-same-as-trained
Validates or exports a model identical to the trained model but not trained.
--trained, --no-trained
Validates or exports the trained model (requires downloading).
--inputs2 INPUTS2 Validates or exports the model on a second set of inputs
to check the exported model supports dynamism. The values is used
as an increment to the first set of inputs. A high value may trick
a different behavior in the model and missed by the exporter.
--runtime {onnxruntime,torch,ref,orteval,orteval10}
onnx runtime to use, `onnxruntime` by default
-o DUMP_FOLDER, --dump-folder DUMP_FOLDER
A folder is created to dumps statistics,
exported program, onnx...
--drop DROP Drops the following inputs names, it should be a list
with comma separated values, example:
--drop position_ids
--opset OPSET onnx opset to use, 18 by default
--subfolder SUBFOLDER
Subfolder where to find the model and the configuration.
--ortfusiontype ORTFUSIONTYPE
Applies onnxruntime fusion, this parameter should contain the
model type or multiple values separated by `|`. `ALL` can be used
to run them all.
-v VERBOSE, --verbose VERBOSE
verbosity
--dtype DTYPE Changes dtype if necessary.
--device DEVICE Changes the device if necessary.
--iop [KEY=VALUE ...]
Additional input options, used to change the default
inputs use to export. Examples:
--iop cls_cache=SlidingWindowCache
--iop cls_cache=StaticCache
--mop [KEY=VALUE ...]
Additional model options, used to change some parameters
of the model. Example:
--mop attn_implementation=sdpa --mop attn_implementation=eager"
--mop "rope_scaling={'rope_type': 'dynamic', 'factor': 10.0}"
--repeat REPEAT number of times to run the model to measures inference time
--warmup WARMUP number of times to run the model to do warmup
--outnames OUTNAMES This comma separated list defines the output names the onnx exporter should use.
--ort-logs, --no-ort-logs
Enables onnxruntime logging when the session is created
--quiet-input-sets QUIET_INPUT_SETS
Avoids raising an exception when an input sets does not work with
the exported model. Example:
--quiet-input-sets=inputs,inputs22
--expop [KEY=VALUE ...]
Additional exporter options, use to change some parameters
of the model. Examples:
--expop report=True
--expop report=True --expop verify=True
--save-ep SAVE_EP
saves the exported program with torch.export.save
and the inputs sets with torch.save,
then command line sbs can be used to look for discrepancies.
If the model id is specified, one untrained version of it is instantiated.
Examples:
python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
--run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
--dtype float16 --device cuda --patch --export onnx-dynamo --opt ir
python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
--run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
--dtype float16 --device cuda --patch --export custom --opt default
python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
--run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
--dtype float16 --device cuda --export modelbuilder
position_ids is usually not needed, they can be removed by adding:
--drop position_ids
The behaviour may be modified compare the original configuration,
the following argument can be rope_scaling to dynamic:
--mop "rope_scaling={'rope_type': 'dynamic', 'factor': 10.0}""
You can profile the command line by running:
pyinstrument -m onnx_diagnostic validate ...
pyinstrument -r html -o profile.html -m onnx_diagnostic validate ...
Get the list of supported tasks¶
The task are the same defined by HuggingFace. The tool only supports a subset of them.
python -m onnx_diagnostic validate
-- list of supported tasks:
MoE
automatic-speech-recognition
feature-extraction
fill-mask
image-classification
image-text-to-text
image-to-video
mask-generation
object-detection
sentence-similarity
summarization
text-classification
text-generation
text-to-image
text2text-generation
zero-shot-image-classification
Get the default inputs for a specific task¶
This returns the dummy inputs for a specific task. There may be too many inputs. Only those the forward method defines are kept.
python -m onnx_diagnostic validate -t text-generation
-- inputs
+ input_ids : T7s2x3
+ attention_mask : T7s2x33
+ position_ids : T7s2x3
+ past_key_values : DynamicCache(key_cache=#4[T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16], value_cache=#4[T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16])
-- dynamic_shapes
+ input_ids : {0:DYN(batch),1:DYN(seq_length)}
+ attention_mask : {0:DYN(batch),1:DYN(cache+seq)}
+ position_ids : {0:DYN(batch),1:DYN(seq_length)}
+ past_key_values : #8[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
Validate dummy inputs for a model¶
The dummy inputs may not work for this model and this task. The following command line checks that. It is no use to export if this fails.
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter=None, optimization=None
[validate_model] dump_folder=None
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 3.703000402310863e-06s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 6.445000508392695e-06s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.1594902490005552s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x75f57ab1d1c0>
[get_untrained_model_with_inputs] model class='LlamaForCausalLM'
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
[validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
[validate_model] -- run the model inputs='inputs_prompt'...
[validate_model] inputs_prompt=dict(input_ids:T7s1x11)
[validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
[validate_model] -- done (final)
-- summary --
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
:second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_torch_model,0.1642740440001944;
:time_preprocess_model_id,4.1920002331607975e-06;
:time_run,0.025481732999651285;
:time_run22,0.004504184999859717;
:time_run2_batch1,0.004818950000299083;
:time_run2_empty_cache,0.0028350860002319678;
:time_run2_prompt,0.009769309000148496;
:time_total_validation_torch,0.053131356999983836;
:version_date,2025-12-13T00:00:47;
:version_device,;
:version_do_run,True;
:version_drop_input,None;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,;
:version_exporter,;
:version_exporter_options,None;
:version_input_options,None;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_model_options,None;
:version_numpy,2.3.5;
:version_onnx,1.21.0;
:version_onnx_diagnostic,0.8.6;
:version_onnx_ir,0.1.13;
:version_onnxruntime,1.24.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,;
:version_ortfusiontype,;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.2;
:version_stop_if_static,0;
:version_submodule,None;
:version_torch,2.10.0.dev20251208+cu130;
:version_transformers,5.0.0.dev0;
:version_use_pretrained,False;
Validate and export a model¶
Exports a model given the task. Checks for discrepancies as well. The latency given are just for one run. It tells how long the benchmark runs but it is far from the latency measure we can get by running multiple times the same model.
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export export-nostrict -o dump_models --patch
[validate_model] dump into 'arnir0_Tiny-LLM/export-nostrict/op18'
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter='export-nostrict', optimization=None
[validate_model] dump_folder='dump_models/arnir0_Tiny-LLM/export-nostrict/op18'
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 2.9590000849566422e-06s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 8.414999683736823e-06s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.15403471300032834s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x75f57ab1d1c0>
[get_untrained_model_with_inputs] model class='LlamaForCausalLM'
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
[validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
[validate_model] -- run the model inputs='inputs_prompt'...
[validate_model] inputs_prompt=dict(input_ids:T7s1x11)
[validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
[validate_model] -- export the model with 'export-nostrict', optimization=None
[validate_model] applies patches before exporting stop_if_static=0
[validate_model] run patched model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (patched run)
[validate_model] patched discrepancies=abs=0, rel=0, dev=0
[call_torch_export_export] exporter='export-nostrict', strict=False, optimization=None
[call_torch_export_export] args=()
[call_torch_export_export] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[call_torch_export_export] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}])
[call_torch_export_export] dynamic_shapes_export_export=dict(input_ids:{0:DYNAMIC,1:DYNAMIC},attention_mask:{0:DYNAMIC,1:DYNAMIC},position_ids:{0:DYNAMIC,1:DYNAMIC},past_key_values:#2[{0:DYNAMIC,2:DYNAMIC},{0:DYNAMIC,2:DYNAMIC}])
[call_torch_export_export] export...
[call_torch_export_export] done (export) with 161 nodes
[validate_model] run exported model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (exported run)
[validate_model] exported discrepancies=abs=0, rel=0, dev=0
[validate_model] -- dumps exported program in 'dump_models/arnir0_Tiny-LLM/export-nostrict/op18'...
[validate_model] done (dump ep)
[validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM/export-nostrict/op18'...
[validate_model] done (dump)
[validate_model] -- done (final)
-- summary --
:disc_exported_abs,0;
:disc_exported_dev,0;
:disc_exported_dnan,0;
:disc_exported_n,204672.0;
:disc_exported_rel,0;
:disc_exported_sum,0.0;
:disc_patched_abs,0;
:disc_patched_dev,0;
:disc_patched_dnan,0;
:disc_patched_n,204672.0;
:disc_patched_rel,0;
:disc_patched_sum,0.0;
:dump_folder,dump_models/arnir0_Tiny-LLM/export-nostrict/op18;
:dump_folder_name,arnir0_Tiny-LLM/export-nostrict/op18;
:export_args,();
:export_dynamic_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
:export_dynamic_shapes_export_export,dict(input_ids:{0:DYNAMIC,1:DYNAMIC},attention_mask:{0:DYNAMIC,1:DYNAMIC},position_ids:{0:DYNAMIC,1:DYNAMIC},past_key_values:#2[{0:DYNAMIC,2:DYNAMIC},{0:DYNAMIC,2:DYNAMIC}]);
:export_exporter,export-nostrict;
:export_graph_nodes,161;
:export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:export_optimization,;
:export_options,{};
:export_strict,False;
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
:second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_torch_model,0.15753290399970865;
:time_export_export,2.1552824450000116;
:time_preprocess_model_id,3.4149998100474477e-06;
:time_run,0.009702604999802134;
:time_run22,0.004284690000531555;
:time_run2_batch1,0.0031760769998072647;
:time_run2_empty_cache,0.003703403999679722;
:time_run2_prompt,0.0038288879995889147;
:time_run_exported,0.014940946000024269;
:time_run_patched,0.0032317610002792208;
:time_torch_export_export,2.1552719069995874;
:time_torch_export_export_n,1;
:time_total_exporter,2.2392298049999226;
:time_total_validation_torch,0.029382527000052505;
:version_date,2025-12-13T00:00:48;
:version_device,;
:version_do_run,True;
:version_drop_input,None;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,dump_models;
:version_exporter,export-nostrict;
:version_exporter_options,None;
:version_input_options,None;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_model_options,None;
:version_numpy,2.3.5;
:version_onnx,1.21.0;
:version_onnx_diagnostic,0.8.6;
:version_onnx_ir,0.1.13;
:version_onnxruntime,1.24.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,;
:version_ortfusiontype,;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.2;
:version_stop_if_static,0;
:version_submodule,None;
:version_torch,2.10.0.dev20251208+cu130;
:version_transformers,5.0.0.dev0;
:version_use_pretrained,False;
Validate ONNX discrepancies¶
Let’s export with ONNX this time and checks for discrepancies.
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export onnx-dynamo -o dump_models --patch --opt ir
[validate_model] dump into 'arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter='onnx-dynamo', optimization='ir'
[validate_model] dump_folder='dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 3.514500076562399e-05s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 9.660000614530873e-06s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.1810636380005235s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x7f4286dbd300>
[get_untrained_model_with_inputs] model class='LlamaForCausalLM'
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
[validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
[validate_model] -- run the model inputs='inputs_prompt'...
[validate_model] inputs_prompt=dict(input_ids:T7s1x11)
[validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
[validate_model] -- export the model with 'onnx-dynamo', optimization='ir'
[validate_model] applies patches before exporting stop_if_static=0
[validate_model] run patched model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (patched run)
[validate_model] patched discrepancies=abs=0, rel=0, dev=0
[call_torch_export_onnx] exporter='onnx-dynamo', optimization='ir'
[call_torch_export_onnx] args=()
[call_torch_export_onnx] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[call_torch_export_onnx] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}])
[call_torch_export_onnx] export...
[call_torch_export_onnx] export_export_kwargs=dict(dynamo:bool,dynamic_shapes:dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]),opset_version:int)
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
Applied 38 of general pattern rewrite rules.
[call_torch_export_onnx] done (export)
[call_torch_export_onnx] starts optimization='ir'...
[call_torch_export_onnx] done (optimization)
[validate_model] dumps onnx program in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
[validate_model] done (dump onnx) in 0.28779480999946827
[validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
[validate_model] done (dump)
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour=None
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour=None
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
[validate_model] -- done (final)
-- summary --
:disc_onnx_ort_run22_abs,8.344650268554688e-07;
:disc_onnx_ort_run22_dev,0;
:disc_onnx_ort_run22_dnan,0;
:disc_onnx_ort_run22_n,404160.0;
:disc_onnx_ort_run22_rel,0.0003670204921167059;
:disc_onnx_ort_run22_sum,0.037561870639599704;
:disc_onnx_ort_run2_batch1_abs,9.5367431640625e-07;
:disc_onnx_ort_run2_batch1_dev,0;
:disc_onnx_ort_run2_batch1_dnan,0;
:disc_onnx_ort_run2_batch1_n,102336.0;
:disc_onnx_ort_run2_batch1_rel,0.00030987364736661046;
:disc_onnx_ort_run2_batch1_sum,0.011194461939794564;
:disc_onnx_ort_run2_empty_cache_abs,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_dev,0;
:disc_onnx_ort_run2_empty_cache_dnan,0;
:disc_onnx_ort_run2_empty_cache_n,193152.0;
:disc_onnx_ort_run2_empty_cache_rel,0.00028247341543503955;
:disc_onnx_ort_run2_empty_cache_sum,0.01621216703074424;
:disc_onnx_ort_run_abs,7.748603820800781e-07;
:disc_onnx_ort_run_dev,0;
:disc_onnx_ort_run_dnan,0;
:disc_onnx_ort_run_n,204672.0;
:disc_onnx_ort_run_rel,0.00044309172106863606;
:disc_onnx_ort_run_sum,0.02031988672524676;
:disc_patched_abs,0;
:disc_patched_dev,0;
:disc_patched_dnan,0;
:disc_patched_n,204672.0;
:disc_patched_rel,0;
:disc_patched_sum,0.0;
:dump_folder,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
:dump_folder_name,arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
:export_args,();
:export_dynamo,True;
:export_exporter,{};
:export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:export_opset,18;
:export_optimization,ir;
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:n_node_Add,12;
:n_node_And,2;
:n_node_Cast,2;
:n_node_Concat,16;
:n_node_Cos,1;
:n_node_Expand,6;
:n_node_Gather,1;
:n_node_GatherND,1;
:n_node_IsNaN,1;
:n_node_LessOrEqual,1;
:n_node_MatMul,11;
:n_node_Max,2;
:n_node_Mul,14;
:n_node_Neg,2;
:n_node_Pow,3;
:n_node_Range,3;
:n_node_Reciprocal,3;
:n_node_ReduceMean,3;
:n_node_Reshape,11;
:n_node_Shape,7;
:n_node_Sigmoid,1;
:n_node_Sin,1;
:n_node_Slice,8;
:n_node_Softmax,1;
:n_node_Sqrt,3;
:n_node_Squeeze,5;
:n_node_Transpose,6;
:n_node_Unsqueeze,13;
:n_node_Where,2;
:n_node_functions,0;
:n_node_initializer_1,16;
:n_node_initializer_7,14;
:n_node_initializer_9,1;
:n_node_nodes,142;
:n_node_nodes_nocst,142;
:onnx_filename,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.onnx;
:onnx_ort_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs22,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs2_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_size,210930;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
:run_feeds_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:run_feeds_inputs2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:run_feeds_inputs_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:run_feeds_inputs_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:run_output_inputs,#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96];
:run_output_inputs2,#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96];
:run_output_inputs_batch1,#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96];
:run_output_inputs_empty_cache,#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96];
:second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_onnx_ort,0.060158758999932616;
:time_create_torch_model,0.24688705100015795;
:time_export_onnx,7.293398728999819;
:time_export_onnx_opt_ir,0.07357997799954319;
:time_onnx_save,0.28779480999946827;
:time_preprocess_model_id,2.133000634785276e-06;
:time_run,0.024862926000423613;
:time_run22,0.006327400999907695;
:time_run2_batch1,0.003826963000392425;
:time_run2_empty_cache,0.0039502529998571845;
:time_run2_prompt,0.004958695000823354;
:time_run_onnx_ort,0.012064802999702806;
:time_run_onnx_ort22,0.002033555999332748;
:time_run_onnx_ort2_batch1,0.0014418579994526226;
:time_run_onnx_ort2_empty_cache,0.0017401610002707457;
:time_run_patched,0.04775452699959715;
:time_torch_export_export,2.4695535500004553;
:time_torch_export_export_n,1;
:time_total,10.371481511000638;
:time_total_exporter,9.34324756299975;
:time_total_validation_onnx,0.13348812599997473;
:time_total_validation_torch,0.04922338500000478;
:version_date,2025-12-13T00:01:04;
:version_device,;
:version_do_run,True;
:version_drop_input,None;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,dump_models;
:version_exporter,onnx-dynamo;
:version_exporter_options,None;
:version_input_options,None;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_model_options,None;
:version_numpy,2.3.5;
:version_onnx,1.21.0;
:version_onnx_diagnostic,0.8.6;
:version_onnx_ir,0.1.13;
:version_onnxruntime,1.24.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,ir;
:version_ortfusiontype,;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.2;
:version_stop_if_static,0;
:version_submodule,None;
:version_torch,2.10.0.dev20251208+cu130;
:version_transformers,5.0.0.dev0;
:version_use_pretrained,False;
[runpythonerror]
/usr/lib/python3.12/copyreg.py:99: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
return cls.__new__(cls, *args)
~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_onnx_program.py:460: UserWarning: # The axis name: batch will not be used, since it shares the same shape constraints with another axis: batch.
rename_mapping = _dynamic_shapes.create_rename_mapping(
Run onnxruntime fusions¶
This option runs transformers optimizations
implemented in onnxruntime. The list of supported model_type can be found in the documentation
of function onnx_diagnostic.torch_models.validate.run_ort_fusion().
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export onnx-dynamo -o dump_models --patch --opt ir --ortfusiontype ALL
[validate_model] dump into 'arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter='onnx-dynamo', optimization='ir'
[validate_model] dump_folder='dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 3.602500055421842e-05s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 2.242299979116069e-05s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.22123626999928092s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x7ecfd0dbd440>
[get_untrained_model_with_inputs] model class='LlamaForCausalLM'
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE past_key_values=#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]
[validate_model] second_input_keys=['inputs_prompt', 'inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]))
[validate_model] -- run the model inputs='inputs_prompt'...
[validate_model] inputs_prompt=dict(input_ids:T7s1x11)
[validate_model] done ([run2_prompt]) - CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]))
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22]) - CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]))
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache]) - CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]))
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1]) - CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]))
[validate_model] -- export the model with 'onnx-dynamo', optimization='ir'
[validate_model] applies patches before exporting stop_if_static=0
[validate_model] run patched model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (patched run)
[validate_model] patched discrepancies=abs=0, rel=0, dev=0
[call_torch_export_onnx] exporter='onnx-dynamo', optimization='ir'
[call_torch_export_onnx] args=()
[call_torch_export_onnx] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[call_torch_export_onnx] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}])
[call_torch_export_onnx] export...
[call_torch_export_onnx] export_export_kwargs=dict(dynamo:bool,dynamic_shapes:dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]),opset_version:int)
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
Applied 38 of general pattern rewrite rules.
[call_torch_export_onnx] done (export)
[call_torch_export_onnx] starts optimization='ir'...
[call_torch_export_onnx] done (optimization)
[validate_model] dumps onnx program in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
[validate_model] done (dump onnx) in 0.2764839909996226
[validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18'...
[validate_model] done (dump)
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour=None
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour=None
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'bart'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bart' in 0.3510645589994965, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bart.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbart'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbart'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'bert'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bert' in 0.2969465330006642, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbert'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'bert_keras'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bert_keras' in 0.23315688699949533, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_keras.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert_keras'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbert_keras'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'bert_tf'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bert_tf' in 0.33474470599958295, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_tf.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert_tf'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbert_tf'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'clip'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'clip' in 0.29281917000025715, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.clip.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortclip'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortclip'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'conformer'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'conformer' in 0.3318845470002998, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.conformer.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortconformer'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortconformer'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'gpt2'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'gpt2' in 0.31542589600030624, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt2'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortgpt2'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'gpt2_tf'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'gpt2_tf' in 0.32224601799953234, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2_tf.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt2_tf'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortgpt2_tf'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'gpt_neox'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'gpt_neox' in 0.2999439209997945, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt_neox.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt_neox'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortgpt_neox'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'mmdit'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'mmdit' in 0.2975515920006728, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.mmdit.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortmmdit'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortmmdit'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'phi'
[validate_model] done 'phi' in 0.08995838300052128, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx'
[validate_onnx_model] missing 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx'
[validate_model] run onnxruntime fusion for 'sam2'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'sam2' in 0.29486544399969716, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.sam2.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortsam2'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortsam2'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'swin'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'swin' in 0.19406753800012666, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.swin.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortswin'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortswin'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 't5'
failed in shape inference <class 'AssertionError'>
[validate_model] done 't5' in 0.19132543799969426, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.t5.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortt5'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortt5'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'tnlr'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'tnlr' in 0.2072156640006142, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.tnlr.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='orttnlr'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='orttnlr'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'unet'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'unet' in 0.40688407400011783, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.unet.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortunet'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortunet'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'vae'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'vae' in 0.2859320799998386, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vae.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortvae'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortvae'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.0003670204921167059, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.00028247341543503955, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00030987364736661046, n=102336.0, dev=0
[validate_model] run onnxruntime fusion for 'vit'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'vit' in 0.23252256700016005, saved into 'dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vit.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortvit'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortvit'
[validate_onnx_model] -- keys=[('inputs', 'run_expected', ''), ('inputs_prompt', 'run_expected2_prompt', '2_prompt'), ('inputs2', 'run_expected22', '22'), ('inputs_empty_cache', 'run_expected2_empty_cache', '2_empty_cache'), ('inputs_batch1', 'run_expected2_batch1', '2_batch1')]
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs22'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=9.5367431640625e-07, rel=0.00033374451371688606, n=404160.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_empty_cache'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=7.152557373046875e-07, rel=0.0002758755967644076, n=193152.0, dev=0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session on inputs 'inputs2_batch1'...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1324882507324219e-06, rel=0.00031306966585304286, n=102336.0, dev=0
[validate_model] -- done (final)
-- summary --
:ERR_onnx_missing_ortphi,FileNotFoundError('dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx');
:ERR_opt_ort_phi,'method' object is not iterable;
:disc_onnx_ort_run22_abs,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortbart,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortbert,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortbert_keras,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortbert_tf,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortclip,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortconformer,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortgpt2,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortgpt2_tf,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortgpt_neox,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortmmdit,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortsam2,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortswin,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortt5,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_orttnlr,9.5367431640625e-07;
:disc_onnx_ort_run22_abs_ortunet,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortvae,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortvit,9.5367431640625e-07;
:disc_onnx_ort_run22_dev,0;
:disc_onnx_ort_run22_dev_ortbart,0;
:disc_onnx_ort_run22_dev_ortbert,0;
:disc_onnx_ort_run22_dev_ortbert_keras,0;
:disc_onnx_ort_run22_dev_ortbert_tf,0;
:disc_onnx_ort_run22_dev_ortclip,0;
:disc_onnx_ort_run22_dev_ortconformer,0;
:disc_onnx_ort_run22_dev_ortgpt2,0;
:disc_onnx_ort_run22_dev_ortgpt2_tf,0;
:disc_onnx_ort_run22_dev_ortgpt_neox,0;
:disc_onnx_ort_run22_dev_ortmmdit,0;
:disc_onnx_ort_run22_dev_ortsam2,0;
:disc_onnx_ort_run22_dev_ortswin,0;
:disc_onnx_ort_run22_dev_ortt5,0;
:disc_onnx_ort_run22_dev_orttnlr,0;
:disc_onnx_ort_run22_dev_ortunet,0;
:disc_onnx_ort_run22_dev_ortvae,0;
:disc_onnx_ort_run22_dev_ortvit,0;
:disc_onnx_ort_run22_dnan,0;
:disc_onnx_ort_run22_dnan_ortbart,0;
:disc_onnx_ort_run22_dnan_ortbert,0;
:disc_onnx_ort_run22_dnan_ortbert_keras,0;
:disc_onnx_ort_run22_dnan_ortbert_tf,0;
:disc_onnx_ort_run22_dnan_ortclip,0;
:disc_onnx_ort_run22_dnan_ortconformer,0;
:disc_onnx_ort_run22_dnan_ortgpt2,0;
:disc_onnx_ort_run22_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run22_dnan_ortgpt_neox,0;
:disc_onnx_ort_run22_dnan_ortmmdit,0;
:disc_onnx_ort_run22_dnan_ortsam2,0;
:disc_onnx_ort_run22_dnan_ortswin,0;
:disc_onnx_ort_run22_dnan_ortt5,0;
:disc_onnx_ort_run22_dnan_orttnlr,0;
:disc_onnx_ort_run22_dnan_ortunet,0;
:disc_onnx_ort_run22_dnan_ortvae,0;
:disc_onnx_ort_run22_dnan_ortvit,0;
:disc_onnx_ort_run22_n,404160.0;
:disc_onnx_ort_run22_n_ortbart,404160.0;
:disc_onnx_ort_run22_n_ortbert,404160.0;
:disc_onnx_ort_run22_n_ortbert_keras,404160.0;
:disc_onnx_ort_run22_n_ortbert_tf,404160.0;
:disc_onnx_ort_run22_n_ortclip,404160.0;
:disc_onnx_ort_run22_n_ortconformer,404160.0;
:disc_onnx_ort_run22_n_ortgpt2,404160.0;
:disc_onnx_ort_run22_n_ortgpt2_tf,404160.0;
:disc_onnx_ort_run22_n_ortgpt_neox,404160.0;
:disc_onnx_ort_run22_n_ortmmdit,404160.0;
:disc_onnx_ort_run22_n_ortsam2,404160.0;
:disc_onnx_ort_run22_n_ortswin,404160.0;
:disc_onnx_ort_run22_n_ortt5,404160.0;
:disc_onnx_ort_run22_n_orttnlr,404160.0;
:disc_onnx_ort_run22_n_ortunet,404160.0;
:disc_onnx_ort_run22_n_ortvae,404160.0;
:disc_onnx_ort_run22_n_ortvit,404160.0;
:disc_onnx_ort_run22_rel,0.0003670204921167059;
:disc_onnx_ort_run22_rel_ortbart,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortbert,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortbert_keras,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortbert_tf,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortclip,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortconformer,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortgpt2,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortgpt2_tf,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortgpt_neox,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortmmdit,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortsam2,0.0003670204921167059;
:disc_onnx_ort_run22_rel_ortswin,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortt5,0.00033374451371688606;
:disc_onnx_ort_run22_rel_orttnlr,0.00033374451371688606;
:disc_onnx_ort_run22_rel_ortunet,0.0003670204921167059;
:disc_onnx_ort_run22_rel_ortvae,0.0003670204921167059;
:disc_onnx_ort_run22_rel_ortvit,0.00033374451371688606;
:disc_onnx_ort_run22_sum,0.037561870639599704;
:disc_onnx_ort_run22_sum_ortbart,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortbert,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortbert_keras,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortbert_tf,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortclip,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortconformer,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortgpt2,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortgpt2_tf,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortgpt_neox,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortmmdit,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortsam2,0.037561870639599704;
:disc_onnx_ort_run22_sum_ortswin,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortt5,0.04027932227860731;
:disc_onnx_ort_run22_sum_orttnlr,0.04027932227860731;
:disc_onnx_ort_run22_sum_ortunet,0.037561870639599704;
:disc_onnx_ort_run22_sum_ortvae,0.037561870639599704;
:disc_onnx_ort_run22_sum_ortvit,0.04027932227860731;
:disc_onnx_ort_run2_batch1_abs,9.5367431640625e-07;
:disc_onnx_ort_run2_batch1_abs_ortbart,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortbert,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortbert_keras,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortbert_tf,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortclip,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortconformer,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortgpt2,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortgpt2_tf,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortgpt_neox,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortmmdit,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortsam2,9.5367431640625e-07;
:disc_onnx_ort_run2_batch1_abs_ortswin,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortt5,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_orttnlr,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_abs_ortunet,9.5367431640625e-07;
:disc_onnx_ort_run2_batch1_abs_ortvae,9.5367431640625e-07;
:disc_onnx_ort_run2_batch1_abs_ortvit,1.1324882507324219e-06;
:disc_onnx_ort_run2_batch1_dev,0;
:disc_onnx_ort_run2_batch1_dev_ortbart,0;
:disc_onnx_ort_run2_batch1_dev_ortbert,0;
:disc_onnx_ort_run2_batch1_dev_ortbert_keras,0;
:disc_onnx_ort_run2_batch1_dev_ortbert_tf,0;
:disc_onnx_ort_run2_batch1_dev_ortclip,0;
:disc_onnx_ort_run2_batch1_dev_ortconformer,0;
:disc_onnx_ort_run2_batch1_dev_ortgpt2,0;
:disc_onnx_ort_run2_batch1_dev_ortgpt2_tf,0;
:disc_onnx_ort_run2_batch1_dev_ortgpt_neox,0;
:disc_onnx_ort_run2_batch1_dev_ortmmdit,0;
:disc_onnx_ort_run2_batch1_dev_ortsam2,0;
:disc_onnx_ort_run2_batch1_dev_ortswin,0;
:disc_onnx_ort_run2_batch1_dev_ortt5,0;
:disc_onnx_ort_run2_batch1_dev_orttnlr,0;
:disc_onnx_ort_run2_batch1_dev_ortunet,0;
:disc_onnx_ort_run2_batch1_dev_ortvae,0;
:disc_onnx_ort_run2_batch1_dev_ortvit,0;
:disc_onnx_ort_run2_batch1_dnan,0;
:disc_onnx_ort_run2_batch1_dnan_ortbart,0;
:disc_onnx_ort_run2_batch1_dnan_ortbert,0;
:disc_onnx_ort_run2_batch1_dnan_ortbert_keras,0;
:disc_onnx_ort_run2_batch1_dnan_ortbert_tf,0;
:disc_onnx_ort_run2_batch1_dnan_ortclip,0;
:disc_onnx_ort_run2_batch1_dnan_ortconformer,0;
:disc_onnx_ort_run2_batch1_dnan_ortgpt2,0;
:disc_onnx_ort_run2_batch1_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run2_batch1_dnan_ortgpt_neox,0;
:disc_onnx_ort_run2_batch1_dnan_ortmmdit,0;
:disc_onnx_ort_run2_batch1_dnan_ortsam2,0;
:disc_onnx_ort_run2_batch1_dnan_ortswin,0;
:disc_onnx_ort_run2_batch1_dnan_ortt5,0;
:disc_onnx_ort_run2_batch1_dnan_orttnlr,0;
:disc_onnx_ort_run2_batch1_dnan_ortunet,0;
:disc_onnx_ort_run2_batch1_dnan_ortvae,0;
:disc_onnx_ort_run2_batch1_dnan_ortvit,0;
:disc_onnx_ort_run2_batch1_n,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbart,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbert,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbert_keras,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbert_tf,102336.0;
:disc_onnx_ort_run2_batch1_n_ortclip,102336.0;
:disc_onnx_ort_run2_batch1_n_ortconformer,102336.0;
:disc_onnx_ort_run2_batch1_n_ortgpt2,102336.0;
:disc_onnx_ort_run2_batch1_n_ortgpt2_tf,102336.0;
:disc_onnx_ort_run2_batch1_n_ortgpt_neox,102336.0;
:disc_onnx_ort_run2_batch1_n_ortmmdit,102336.0;
:disc_onnx_ort_run2_batch1_n_ortsam2,102336.0;
:disc_onnx_ort_run2_batch1_n_ortswin,102336.0;
:disc_onnx_ort_run2_batch1_n_ortt5,102336.0;
:disc_onnx_ort_run2_batch1_n_orttnlr,102336.0;
:disc_onnx_ort_run2_batch1_n_ortunet,102336.0;
:disc_onnx_ort_run2_batch1_n_ortvae,102336.0;
:disc_onnx_ort_run2_batch1_n_ortvit,102336.0;
:disc_onnx_ort_run2_batch1_rel,0.00030987364736661046;
:disc_onnx_ort_run2_batch1_rel_ortbart,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortbert,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortbert_keras,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortbert_tf,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortclip,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortconformer,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortgpt2,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortgpt2_tf,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortgpt_neox,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortmmdit,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortsam2,0.00030987364736661046;
:disc_onnx_ort_run2_batch1_rel_ortswin,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortt5,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_orttnlr,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_rel_ortunet,0.00030987364736661046;
:disc_onnx_ort_run2_batch1_rel_ortvae,0.00030987364736661046;
:disc_onnx_ort_run2_batch1_rel_ortvit,0.00031306966585304286;
:disc_onnx_ort_run2_batch1_sum,0.011194461939794564;
:disc_onnx_ort_run2_batch1_sum_ortbart,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortbert,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortbert_keras,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortbert_tf,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortclip,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortconformer,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortgpt2,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortgpt2_tf,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortgpt_neox,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortmmdit,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortsam2,0.011194461939794564;
:disc_onnx_ort_run2_batch1_sum_ortswin,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortt5,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_orttnlr,0.011881725947318955;
:disc_onnx_ort_run2_batch1_sum_ortunet,0.011194461939794564;
:disc_onnx_ort_run2_batch1_sum_ortvae,0.011194461939794564;
:disc_onnx_ort_run2_batch1_sum_ortvit,0.011881725947318955;
:disc_onnx_ort_run2_empty_cache_abs,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortbart,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortbert,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortbert_keras,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortbert_tf,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortclip,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortconformer,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortgpt2,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortgpt2_tf,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortgpt_neox,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortmmdit,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortsam2,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortswin,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortt5,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_orttnlr,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortunet,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortvae,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortvit,7.152557373046875e-07;
:disc_onnx_ort_run2_empty_cache_dev,0;
:disc_onnx_ort_run2_empty_cache_dev_ortbart,0;
:disc_onnx_ort_run2_empty_cache_dev_ortbert,0;
:disc_onnx_ort_run2_empty_cache_dev_ortbert_keras,0;
:disc_onnx_ort_run2_empty_cache_dev_ortbert_tf,0;
:disc_onnx_ort_run2_empty_cache_dev_ortclip,0;
:disc_onnx_ort_run2_empty_cache_dev_ortconformer,0;
:disc_onnx_ort_run2_empty_cache_dev_ortgpt2,0;
:disc_onnx_ort_run2_empty_cache_dev_ortgpt2_tf,0;
:disc_onnx_ort_run2_empty_cache_dev_ortgpt_neox,0;
:disc_onnx_ort_run2_empty_cache_dev_ortmmdit,0;
:disc_onnx_ort_run2_empty_cache_dev_ortsam2,0;
:disc_onnx_ort_run2_empty_cache_dev_ortswin,0;
:disc_onnx_ort_run2_empty_cache_dev_ortt5,0;
:disc_onnx_ort_run2_empty_cache_dev_orttnlr,0;
:disc_onnx_ort_run2_empty_cache_dev_ortunet,0;
:disc_onnx_ort_run2_empty_cache_dev_ortvae,0;
:disc_onnx_ort_run2_empty_cache_dev_ortvit,0;
:disc_onnx_ort_run2_empty_cache_dnan,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbart,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbert,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbert_keras,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbert_tf,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortclip,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortconformer,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortgpt2,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortgpt_neox,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortmmdit,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortsam2,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortswin,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortt5,0;
:disc_onnx_ort_run2_empty_cache_dnan_orttnlr,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortunet,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortvae,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortvit,0;
:disc_onnx_ort_run2_empty_cache_n,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbart,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbert,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbert_keras,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbert_tf,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortclip,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortconformer,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortgpt2,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortgpt2_tf,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortgpt_neox,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortmmdit,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortsam2,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortswin,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortt5,193152.0;
:disc_onnx_ort_run2_empty_cache_n_orttnlr,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortunet,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortvae,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortvit,193152.0;
:disc_onnx_ort_run2_empty_cache_rel,0.00028247341543503955;
:disc_onnx_ort_run2_empty_cache_rel_ortbart,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortbert,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortbert_keras,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortbert_tf,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortclip,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortconformer,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortgpt2,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortgpt2_tf,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortgpt_neox,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortmmdit,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortsam2,0.00028247341543503955;
:disc_onnx_ort_run2_empty_cache_rel_ortswin,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortt5,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_orttnlr,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_rel_ortunet,0.00028247341543503955;
:disc_onnx_ort_run2_empty_cache_rel_ortvae,0.00028247341543503955;
:disc_onnx_ort_run2_empty_cache_rel_ortvit,0.0002758755967644076;
:disc_onnx_ort_run2_empty_cache_sum,0.01621216703074424;
:disc_onnx_ort_run2_empty_cache_sum_ortbart,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortbert,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortbert_keras,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortbert_tf,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortclip,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortconformer,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortgpt2,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortgpt2_tf,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortgpt_neox,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortmmdit,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortsam2,0.01621216703074424;
:disc_onnx_ort_run2_empty_cache_sum_ortswin,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortt5,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_orttnlr,0.01956161782959498;
:disc_onnx_ort_run2_empty_cache_sum_ortunet,0.01621216703074424;
:disc_onnx_ort_run2_empty_cache_sum_ortvae,0.01621216703074424;
:disc_onnx_ort_run2_empty_cache_sum_ortvit,0.01956161782959498;
:disc_onnx_ort_run_abs,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortbart,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortbert,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortbert_keras,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortbert_tf,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortclip,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortconformer,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortgpt2,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortgpt2_tf,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortgpt_neox,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortmmdit,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortsam2,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortswin,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortt5,8.344650268554688e-07;
:disc_onnx_ort_run_abs_orttnlr,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortunet,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortvae,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortvit,8.344650268554688e-07;
:disc_onnx_ort_run_dev,0;
:disc_onnx_ort_run_dev_ortbart,0;
:disc_onnx_ort_run_dev_ortbert,0;
:disc_onnx_ort_run_dev_ortbert_keras,0;
:disc_onnx_ort_run_dev_ortbert_tf,0;
:disc_onnx_ort_run_dev_ortclip,0;
:disc_onnx_ort_run_dev_ortconformer,0;
:disc_onnx_ort_run_dev_ortgpt2,0;
:disc_onnx_ort_run_dev_ortgpt2_tf,0;
:disc_onnx_ort_run_dev_ortgpt_neox,0;
:disc_onnx_ort_run_dev_ortmmdit,0;
:disc_onnx_ort_run_dev_ortsam2,0;
:disc_onnx_ort_run_dev_ortswin,0;
:disc_onnx_ort_run_dev_ortt5,0;
:disc_onnx_ort_run_dev_orttnlr,0;
:disc_onnx_ort_run_dev_ortunet,0;
:disc_onnx_ort_run_dev_ortvae,0;
:disc_onnx_ort_run_dev_ortvit,0;
:disc_onnx_ort_run_dnan,0;
:disc_onnx_ort_run_dnan_ortbart,0;
:disc_onnx_ort_run_dnan_ortbert,0;
:disc_onnx_ort_run_dnan_ortbert_keras,0;
:disc_onnx_ort_run_dnan_ortbert_tf,0;
:disc_onnx_ort_run_dnan_ortclip,0;
:disc_onnx_ort_run_dnan_ortconformer,0;
:disc_onnx_ort_run_dnan_ortgpt2,0;
:disc_onnx_ort_run_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run_dnan_ortgpt_neox,0;
:disc_onnx_ort_run_dnan_ortmmdit,0;
:disc_onnx_ort_run_dnan_ortsam2,0;
:disc_onnx_ort_run_dnan_ortswin,0;
:disc_onnx_ort_run_dnan_ortt5,0;
:disc_onnx_ort_run_dnan_orttnlr,0;
:disc_onnx_ort_run_dnan_ortunet,0;
:disc_onnx_ort_run_dnan_ortvae,0;
:disc_onnx_ort_run_dnan_ortvit,0;
:disc_onnx_ort_run_n,204672.0;
:disc_onnx_ort_run_n_ortbart,204672.0;
:disc_onnx_ort_run_n_ortbert,204672.0;
:disc_onnx_ort_run_n_ortbert_keras,204672.0;
:disc_onnx_ort_run_n_ortbert_tf,204672.0;
:disc_onnx_ort_run_n_ortclip,204672.0;
:disc_onnx_ort_run_n_ortconformer,204672.0;
:disc_onnx_ort_run_n_ortgpt2,204672.0;
:disc_onnx_ort_run_n_ortgpt2_tf,204672.0;
:disc_onnx_ort_run_n_ortgpt_neox,204672.0;
:disc_onnx_ort_run_n_ortmmdit,204672.0;
:disc_onnx_ort_run_n_ortsam2,204672.0;
:disc_onnx_ort_run_n_ortswin,204672.0;
:disc_onnx_ort_run_n_ortt5,204672.0;
:disc_onnx_ort_run_n_orttnlr,204672.0;
:disc_onnx_ort_run_n_ortunet,204672.0;
:disc_onnx_ort_run_n_ortvae,204672.0;
:disc_onnx_ort_run_n_ortvit,204672.0;
:disc_onnx_ort_run_rel,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortbart,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortbert,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortbert_keras,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortbert_tf,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortclip,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortconformer,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortgpt2,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortgpt2_tf,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortgpt_neox,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortmmdit,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortsam2,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortswin,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortt5,0.00038373230338287646;
:disc_onnx_ort_run_rel_orttnlr,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortunet,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortvae,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortvit,0.00038373230338287646;
:disc_onnx_ort_run_sum,0.02031988672524676;
:disc_onnx_ort_run_sum_ortbart,0.022044641082175076;
:disc_onnx_ort_run_sum_ortbert,0.022044641082175076;
:disc_onnx_ort_run_sum_ortbert_keras,0.022044641082175076;
:disc_onnx_ort_run_sum_ortbert_tf,0.022044641082175076;
:disc_onnx_ort_run_sum_ortclip,0.022044641082175076;
:disc_onnx_ort_run_sum_ortconformer,0.022044641082175076;
:disc_onnx_ort_run_sum_ortgpt2,0.022044641082175076;
:disc_onnx_ort_run_sum_ortgpt2_tf,0.022044641082175076;
:disc_onnx_ort_run_sum_ortgpt_neox,0.022044641082175076;
:disc_onnx_ort_run_sum_ortmmdit,0.022044641082175076;
:disc_onnx_ort_run_sum_ortsam2,0.02031988672524676;
:disc_onnx_ort_run_sum_ortswin,0.022044641082175076;
:disc_onnx_ort_run_sum_ortt5,0.022044641082175076;
:disc_onnx_ort_run_sum_orttnlr,0.022044641082175076;
:disc_onnx_ort_run_sum_ortunet,0.02031988672524676;
:disc_onnx_ort_run_sum_ortvae,0.02031988672524676;
:disc_onnx_ort_run_sum_ortvit,0.022044641082175076;
:disc_patched_abs,0;
:disc_patched_dev,0;
:disc_patched_dnan,0;
:disc_patched_n,204672.0;
:disc_patched_rel,0;
:disc_patched_sum,0.0;
:dump_folder,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
:dump_folder_name,arnir0_Tiny-LLM/onnx-dynamo/ir/op18;
:export_args,();
:export_dynamo,True;
:export_exporter,{};
:export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:export_opset,18;
:export_optimization,ir;
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'rope_parameters':{'rope_theta':10000.0,'rope_type':'default'},'return_dict':True,'output_hidden_states':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'_name_or_path':'','transformers_version':'5.0.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(seq_length)},past_key_values:#2[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:n_node_Add,12;
:n_node_And,2;
:n_node_Cast,2;
:n_node_Concat,16;
:n_node_Cos,1;
:n_node_Expand,6;
:n_node_Gather,1;
:n_node_GatherND,1;
:n_node_IsNaN,1;
:n_node_LessOrEqual,1;
:n_node_MatMul,11;
:n_node_Max,2;
:n_node_Mul,14;
:n_node_Neg,2;
:n_node_Pow,3;
:n_node_Range,3;
:n_node_Reciprocal,3;
:n_node_ReduceMean,3;
:n_node_Reshape,11;
:n_node_Shape,7;
:n_node_Sigmoid,1;
:n_node_Sin,1;
:n_node_Slice,8;
:n_node_Softmax,1;
:n_node_Sqrt,3;
:n_node_Squeeze,5;
:n_node_Transpose,6;
:n_node_Unsqueeze,13;
:n_node_Where,2;
:n_node_functions,0;
:n_node_initializer_1,16;
:n_node_initializer_7,14;
:n_node_initializer_9,1;
:n_node_nodes,142;
:n_node_nodes_nocst,142;
:onnx_filename,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.onnx;
:onnx_filename_ortbart,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bart.onnx;
:onnx_filename_ortbert,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert.onnx;
:onnx_filename_ortbert_keras,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_keras.onnx;
:onnx_filename_ortbert_tf,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_tf.onnx;
:onnx_filename_ortclip,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.clip.onnx;
:onnx_filename_ortconformer,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.conformer.onnx;
:onnx_filename_ortgpt2,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2.onnx;
:onnx_filename_ortgpt2_tf,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2_tf.onnx;
:onnx_filename_ortgpt_neox,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt_neox.onnx;
:onnx_filename_ortmmdit,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.mmdit.onnx;
:onnx_filename_ortsam2,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.sam2.onnx;
:onnx_filename_ortswin,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.swin.onnx;
:onnx_filename_ortt5,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.t5.onnx;
:onnx_filename_orttnlr,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.tnlr.onnx;
:onnx_filename_ortunet,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.unet.onnx;
:onnx_filename_ortvae,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vae.onnx;
:onnx_filename_ortvit,dump_models/arnir0_Tiny-LLM/onnx-dynamo/ir/op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vit.onnx;
:onnx_ort_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs22,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbart,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbert,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbert_keras,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbert_tf,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortclip,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortconformer,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortgpt2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortgpt2_tf,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortgpt_neox,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortmmdit,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortsam2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortswin,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortt5,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_orttnlr,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortunet,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortvae,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortvit,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:onnx_ort_inputs2_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbart,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbert,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbert_keras,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbert_tf,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortclip,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortconformer,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortgpt2,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortgpt2_tf,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortgpt_neox,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortmmdit,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortsam2,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortswin,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortt5,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_orttnlr,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortunet,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortvae,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortvit,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:onnx_ort_inputs2_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbart,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbert,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbert_keras,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbert_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortclip,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortconformer,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortgpt2,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortgpt2_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortgpt_neox,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortmmdit,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortsam2,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortswin,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortt5,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_orttnlr,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortunet,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortvae,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortvit,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:onnx_ort_inputs_ortbart,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortbert,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortbert_keras,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortbert_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortclip,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortconformer,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortgpt2,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortgpt2_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortgpt_neox,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortmmdit,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortsam2,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortswin,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortt5,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_orttnlr,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortunet,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortvae,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_ort_inputs_ortvit,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:onnx_size,210930;
:onnx_size_ortbart,180377;
:onnx_size_ortbert,180377;
:onnx_size_ortbert_keras,180440;
:onnx_size_ortbert_tf,180411;
:onnx_size_ortclip,180377;
:onnx_size_ortconformer,180429;
:onnx_size_ortgpt2,180377;
:onnx_size_ortgpt2_tf,180409;
:onnx_size_ortgpt_neox,180418;
:onnx_size_ortmmdit,180386;
:onnx_size_ortsam2,211705;
:onnx_size_ortswin,180377;
:onnx_size_ortt5,180358;
:onnx_size_orttnlr,180377;
:onnx_size_ortunet,211705;
:onnx_size_ortvae,211695;
:onnx_size_ortvit,180367;
:opt_ort_bart_delta_node,-18;
:opt_ort_bart_duration,0.1081396190002124;
:opt_ort_bart_duration_save,0.07080096099980437;
:opt_ort_bart_n_nodes1,142;
:opt_ort_bart_n_nodes2,124;
:opt_ort_bert_delta_node,-18;
:opt_ort_bert_duration,0.125249860000622;
:opt_ort_bert_duration_save,0.06694783900002221;
:opt_ort_bert_keras_delta_node,-18;
:opt_ort_bert_keras_duration,0.1128023729997949;
:opt_ort_bert_keras_duration_save,0.08540037700004177;
:opt_ort_bert_keras_n_nodes1,142;
:opt_ort_bert_keras_n_nodes2,124;
:opt_ort_bert_n_nodes1,142;
:opt_ort_bert_n_nodes2,124;
:opt_ort_bert_tf_delta_node,-18;
:opt_ort_bert_tf_duration,0.1342601710002782;
:opt_ort_bert_tf_duration_save,0.10411768500034668;
:opt_ort_bert_tf_n_nodes1,142;
:opt_ort_bert_tf_n_nodes2,124;
:opt_ort_clip_delta_node,-18;
:opt_ort_clip_duration,0.12979106000057072;
:opt_ort_clip_duration_save,0.08649819299989758;
:opt_ort_clip_n_nodes1,142;
:opt_ort_clip_n_nodes2,124;
:opt_ort_conformer_delta_node,-18;
:opt_ort_conformer_duration,0.1310952969997743;
:opt_ort_conformer_duration_save,0.09335420099978364;
:opt_ort_conformer_n_nodes1,142;
:opt_ort_conformer_n_nodes2,124;
:opt_ort_gpt2_delta_node,-18;
:opt_ort_gpt2_duration,0.13896085000033054;
:opt_ort_gpt2_duration_save,0.08735726400027488;
:opt_ort_gpt2_n_nodes1,142;
:opt_ort_gpt2_n_nodes2,124;
:opt_ort_gpt2_tf_delta_node,-18;
:opt_ort_gpt2_tf_duration,0.1397278650001681;
:opt_ort_gpt2_tf_duration_save,0.08080188700023427;
:opt_ort_gpt2_tf_n_nodes1,142;
:opt_ort_gpt2_tf_n_nodes2,124;
:opt_ort_gpt_neox_delta_node,-18;
:opt_ort_gpt_neox_duration,0.1250381509998988;
:opt_ort_gpt_neox_duration_save,0.08666773400000238;
:opt_ort_gpt_neox_n_nodes1,142;
:opt_ort_gpt_neox_n_nodes2,124;
:opt_ort_mmdit_delta_node,-18;
:opt_ort_mmdit_duration,0.12089565200039942;
:opt_ort_mmdit_duration_save,0.08365179799966427;
:opt_ort_mmdit_n_nodes1,142;
:opt_ort_mmdit_n_nodes2,124;
:opt_ort_phi_duration,0.0001622119998501148;
:opt_ort_sam2_delta_node,0;
:opt_ort_sam2_duration,0.14084144400021614;
:opt_ort_sam2_duration_save,0.08352531099990301;
:opt_ort_sam2_n_nodes1,142;
:opt_ort_sam2_n_nodes2,142;
:opt_ort_swin_delta_node,-18;
:opt_ort_swin_duration,0.06972301899986633;
:opt_ort_swin_duration_save,0.06656971299980796;
:opt_ort_swin_n_nodes1,142;
:opt_ort_swin_n_nodes2,124;
:opt_ort_t5_delta_node,-18;
:opt_ort_t5_duration,0.07667749100073706;
:opt_ort_t5_duration_save,0.0940340120005203;
:opt_ort_t5_n_nodes1,142;
:opt_ort_t5_n_nodes2,124;
:opt_ort_tnlr_delta_node,-18;
:opt_ort_tnlr_duration,0.08765502900041611;
:opt_ort_tnlr_duration_save,0.10224573199957376;
:opt_ort_tnlr_n_nodes1,142;
:opt_ort_tnlr_n_nodes2,124;
:opt_ort_unet_delta_node,0;
:opt_ort_unet_duration,0.22267835600086983;
:opt_ort_unet_duration_save,0.0957072210003389;
:opt_ort_unet_n_nodes1,142;
:opt_ort_unet_n_nodes2,142;
:opt_ort_vae_delta_node,0;
:opt_ort_vae_duration,0.1537860880007429;
:opt_ort_vae_duration_save,0.07271084900003189;
:opt_ort_vae_n_nodes1,142;
:opt_ort_vae_n_nodes2,142;
:opt_ort_vit_delta_node,-18;
:opt_ort_vit_duration,0.10476892099995894;
:opt_ort_vit_duration_save,0.11037142499935726;
:opt_ort_vit_n_nodes1,142;
:opt_ort_vit_n_nodes2,124;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:run_expected2_prompt,CausalLMOutputWithPast(logits:T1s1x11x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x11x96], value_cache=#1[T1s1x1x11x96]));
:run_feeds_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x30x96,past_key_values_value_0:A1s2x1x30x96);
:run_feeds_inputs2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_0:A1s3x1x31x96,past_key_values_value_0:A1s3x1x31x96);
:run_feeds_inputs_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_0:A1s1x1x30x96,past_key_values_value_0:A1s1x1x30x96);
:run_feeds_inputs_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_0:A1s2x1x0x96,past_key_values_value_0:A1s2x1x0x96);
:run_output_inputs,#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96];
:run_output_inputs2,#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96];
:run_output_inputs_batch1,#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96];
:run_output_inputs_empty_cache,#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96];
:second_input_keys,inputs_prompt,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_onnx_ort,0.06252589500036265;
:time_create_onnx_ort_ortbart,0.05515878400001384;
:time_create_onnx_ort_ortbert,0.05189890600013314;
:time_create_onnx_ort_ortbert_keras,0.05960247500024707;
:time_create_onnx_ort_ortbert_tf,0.04886963199987804;
:time_create_onnx_ort_ortclip,0.06926605299941002;
:time_create_onnx_ort_ortconformer,0.04595562500071537;
:time_create_onnx_ort_ortgpt2,0.04213766300017596;
:time_create_onnx_ort_ortgpt2_tf,0.050707393000266165;
:time_create_onnx_ort_ortgpt_neox,0.042077367000274535;
:time_create_onnx_ort_ortmmdit,0.05336613999952533;
:time_create_onnx_ort_ortsam2,0.04459294200023578;
:time_create_onnx_ort_ortswin,0.04489113300041936;
:time_create_onnx_ort_ortt5,0.044958821999898646;
:time_create_onnx_ort_orttnlr,0.05702092800038372;
:time_create_onnx_ort_ortunet,0.053053188000376394;
:time_create_onnx_ort_ortvae,0.048923679999461456;
:time_create_onnx_ort_ortvit,0.055918007000400394;
:time_create_torch_model,0.36343137599942565;
:time_export_onnx,10.21764251499917;
:time_export_onnx_opt_ir,0.06374631299968314;
:time_onnx_save,0.2764839909996226;
:time_ortfusion_ortbart,0.3510645589994965;
:time_ortfusion_ortbert,0.2969465330006642;
:time_ortfusion_ortbert_keras,0.23315688699949533;
:time_ortfusion_ortbert_tf,0.33474470599958295;
:time_ortfusion_ortclip,0.29281917000025715;
:time_ortfusion_ortconformer,0.3318845470002998;
:time_ortfusion_ortgpt2,0.31542589600030624;
:time_ortfusion_ortgpt2_tf,0.32224601799953234;
:time_ortfusion_ortgpt_neox,0.2999439209997945;
:time_ortfusion_ortmmdit,0.2975515920006728;
:time_ortfusion_ortphi,0.08995838300052128;
:time_ortfusion_ortsam2,0.29486544399969716;
:time_ortfusion_ortswin,0.19406753800012666;
:time_ortfusion_ortt5,0.19132543799969426;
:time_ortfusion_orttnlr,0.2072156640006142;
:time_ortfusion_ortunet,0.40688407400011783;
:time_ortfusion_ortvae,0.2859320799998386;
:time_ortfusion_ortvit,0.23252256700016005;
:time_preprocess_model_id,2.8360000214888714e-06;
:time_run,0.021458939999320137;
:time_run22,0.017706991000522976;
:time_run2_batch1,0.00980574200002593;
:time_run2_empty_cache,0.009491083000284561;
:time_run2_prompt,0.012993262999771105;
:time_run_onnx_ort,0.014628360000642715;
:time_run_onnx_ort22,0.0025141380001514335;
:time_run_onnx_ort22_ortbart,0.005140731000210508;
:time_run_onnx_ort22_ortbert,0.013292743999954837;
:time_run_onnx_ort22_ortbert_keras,0.002659392999703414;
:time_run_onnx_ort22_ortbert_tf,0.013441902000522532;
:time_run_onnx_ort22_ortclip,0.0029201830002421048;
:time_run_onnx_ort22_ortconformer,0.002521733999856224;
:time_run_onnx_ort22_ortgpt2,0.014200315999914892;
:time_run_onnx_ort22_ortgpt2_tf,0.0031847099999140482;
:time_run_onnx_ort22_ortgpt_neox,0.0023740799997540307;
:time_run_onnx_ort22_ortmmdit,0.002959851999548846;
:time_run_onnx_ort22_ortsam2,0.004716360000202258;
:time_run_onnx_ort22_ortswin,0.002684639999642968;
:time_run_onnx_ort22_ortt5,0.02069069600020157;
:time_run_onnx_ort22_orttnlr,0.010002117000112776;
:time_run_onnx_ort22_ortunet,0.002353546999984246;
:time_run_onnx_ort22_ortvae,0.0023429319999195286;
:time_run_onnx_ort22_ortvit,0.0037882470005570212;
:time_run_onnx_ort2_batch1,0.001640276000216545;
:time_run_onnx_ort2_batch1_ortbart,0.0028026090003550053;
:time_run_onnx_ort2_batch1_ortbert,0.0018720190000749426;
:time_run_onnx_ort2_batch1_ortbert_keras,0.013595508999969752;
:time_run_onnx_ort2_batch1_ortbert_tf,0.0024547650000386056;
:time_run_onnx_ort2_batch1_ortclip,0.013007330999244004;
:time_run_onnx_ort2_batch1_ortconformer,0.0017593330003364827;
:time_run_onnx_ort2_batch1_ortgpt2,0.0031623920003767125;
:time_run_onnx_ort2_batch1_ortgpt2_tf,0.0015033630006655585;
:time_run_onnx_ort2_batch1_ortgpt_neox,0.0020194600001559593;
:time_run_onnx_ort2_batch1_ortmmdit,0.0024945700006355764;
:time_run_onnx_ort2_batch1_ortsam2,0.001668388000325649;
:time_run_onnx_ort2_batch1_ortswin,0.0038086080003267853;
:time_run_onnx_ort2_batch1_ortt5,0.001743314000123064;
:time_run_onnx_ort2_batch1_orttnlr,0.010116893000486016;
:time_run_onnx_ort2_batch1_ortunet,0.001681552000263764;
:time_run_onnx_ort2_batch1_ortvae,0.0018249619997732225;
:time_run_onnx_ort2_batch1_ortvit,0.0017825400000219815;
:time_run_onnx_ort2_empty_cache,0.0019044749997192412;
:time_run_onnx_ort2_empty_cache_ortbart,0.001671471999543428;
:time_run_onnx_ort2_empty_cache_ortbert,0.0019678620001286617;
:time_run_onnx_ort2_empty_cache_ortbert_keras,0.001805663000595814;
:time_run_onnx_ort2_empty_cache_ortbert_tf,0.013713365000512567;
:time_run_onnx_ort2_empty_cache_ortclip,0.0020977069998480147;
:time_run_onnx_ort2_empty_cache_ortconformer,0.0017542239993417752;
:time_run_onnx_ort2_empty_cache_ortgpt2,0.0031271990001187078;
:time_run_onnx_ort2_empty_cache_ortgpt2_tf,0.0018255900004078285;
:time_run_onnx_ort2_empty_cache_ortgpt_neox,0.010111639000569994;
:time_run_onnx_ort2_empty_cache_ortmmdit,0.0035294679992148303;
:time_run_onnx_ort2_empty_cache_ortsam2,0.002091819000270334;
:time_run_onnx_ort2_empty_cache_ortswin,0.0018121220000466565;
:time_run_onnx_ort2_empty_cache_ortt5,0.0016685509999661008;
:time_run_onnx_ort2_empty_cache_orttnlr,0.0022954910000407835;
:time_run_onnx_ort2_empty_cache_ortunet,0.0019106420004391111;
:time_run_onnx_ort2_empty_cache_ortvae,0.0025932259995897766;
:time_run_onnx_ort2_empty_cache_ortvit,0.0020791719998669578;
:time_run_onnx_ort_ortbart,0.0020290140000724932;
:time_run_onnx_ort_ortbert,0.0020159980003882083;
:time_run_onnx_ort_ortbert_keras,0.005379502000323555;
:time_run_onnx_ort_ortbert_tf,0.0023816099992473028;
:time_run_onnx_ort_ortclip,0.0045809740004187915;
:time_run_onnx_ort_ortconformer,0.0022227129993552808;
:time_run_onnx_ort_ortgpt2,0.002124182999978075;
:time_run_onnx_ort_ortgpt2_tf,0.005974869999590737;
:time_run_onnx_ort_ortgpt_neox,0.001906665000205976;
:time_run_onnx_ort_ortmmdit,0.003031391000149597;
:time_run_onnx_ort_ortsam2,0.0022050140005376306;
:time_run_onnx_ort_ortswin,0.0023364819999187603;
:time_run_onnx_ort_ortt5,0.0022964179997870815;
:time_run_onnx_ort_orttnlr,0.005081017999145843;
:time_run_onnx_ort_ortunet,0.0021264429997245315;
:time_run_onnx_ort_ortvae,0.0032280220002576243;
:time_run_onnx_ort_ortvit,0.0022500929999296204;
:time_run_patched,0.006632437000007485;
:time_torch_export_export,4.488303775999157;
:time_torch_export_export_n,1;
:time_total,26.70319910299986;
:time_total_exporter,15.874878257000091;
:time_total_validation_onnx,0.1511904049993973;
:time_total_validation_torch,0.08218378200035659;
:version_date,2025-12-13T00:01:32;
:version_device,;
:version_do_run,True;
:version_drop_input,None;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,dump_models;
:version_exporter,onnx-dynamo;
:version_exporter_options,None;
:version_input_options,None;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_model_options,None;
:version_numpy,2.3.5;
:version_onnx,1.21.0;
:version_onnx_diagnostic,0.8.6;
:version_onnx_ir,0.1.13;
:version_onnxruntime,1.24.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,ir;
:version_ortbart_hidden_size,192;
:version_ortbart_num_attention_heads,2;
:version_ortbert_hidden_size,192;
:version_ortbert_keras_hidden_size,192;
:version_ortbert_keras_num_attention_heads,2;
:version_ortbert_num_attention_heads,2;
:version_ortbert_tf_hidden_size,192;
:version_ortbert_tf_num_attention_heads,2;
:version_ortclip_hidden_size,192;
:version_ortclip_num_attention_heads,2;
:version_ortconformer_hidden_size,192;
:version_ortconformer_num_attention_heads,2;
:version_ortfusiontype,ALL;
:version_ortgpt2_hidden_size,192;
:version_ortgpt2_num_attention_heads,2;
:version_ortgpt2_tf_hidden_size,192;
:version_ortgpt2_tf_num_attention_heads,2;
:version_ortgpt_neox_hidden_size,192;
:version_ortgpt_neox_num_attention_heads,2;
:version_ortmmdit_hidden_size,192;
:version_ortmmdit_num_attention_heads,2;
:version_ortphi_hidden_size,192;
:version_ortphi_num_attention_heads,2;
:version_ortsam2_hidden_size,192;
:version_ortsam2_num_attention_heads,2;
:version_ortswin_hidden_size,192;
:version_ortswin_num_attention_heads,2;
:version_ortt5_hidden_size,192;
:version_ortt5_num_attention_heads,2;
:version_orttnlr_hidden_size,192;
:version_orttnlr_num_attention_heads,2;
:version_ortunet_hidden_size,192;
:version_ortunet_num_attention_heads,2;
:version_ortvae_hidden_size,192;
:version_ortvae_num_attention_heads,2;
:version_ortvit_hidden_size,192;
:version_ortvit_num_attention_heads,2;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.2;
:version_stop_if_static,0;
:version_submodule,None;
:version_torch,2.10.0.dev20251208+cu130;
:version_transformers,5.0.0.dev0;
:version_use_pretrained,False;
[runpythonerror]
/usr/lib/python3.12/copyreg.py:99: FutureWarning: `isinstance(treespec, LeafSpec)` is deprecated, use `isinstance(treespec, TreeSpec) and treespec.is_leaf()` instead.
return cls.__new__(cls, *args)
~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_onnx_program.py:460: UserWarning: # The axis name: batch will not be used, since it shares the same shape constraints with another axis: batch.
rename_mapping = _dynamic_shapes.create_rename_mapping(
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
Model producer not matched: Expected "keras2onnx", Got "pytorch".Please specify correct --model_type parameter.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
Model producer not matched: Expected "tf2onnx", Got "pytorch".Please specify correct --model_type parameter.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
Model producer not matched: Expected "tf2onnx", Got "pytorch".Please specify correct --model_type parameter.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
fusion: 0%| | 0/5 [00:00<?, ?it/s]
The optimized model requires LayerNormalization with broadcast support. Please use onnxruntime-gpu>=1.21 for inference.
fusion: 20%|██ | 1/5 [00:00<00:00, 10.64it/s]
fusion: 60%|██████ | 3/5 [00:00<00:00, 29.40it/s]
fusion: 100%|██████████| 5/5 [00:00<00:00, 47.33it/s]
sam2 fusion: 0%| | 0/12 [00:00<?, ?it/s]
symbolic shape inference disabled or failed.
sam2 fusion: 50%|█████ | 6/12 [00:00<00:00, 61.06it/s]
sam2 fusion: 83%|████████▎ | 10/12 [00:00<00:00, 99.62it/s]
sam2 fusion: 100%|██████████| 12/12 [00:00<00:00, 90.09it/s]
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
fusion: 0%| | 0/18 [00:00<?, ?it/s]
fusion: 22%|██▏ | 4/18 [00:00<00:00, 39.46it/s]
symbolic shape inference disabled or failed.
fusion: 50%|█████ | 9/18 [00:00<00:00, 39.46it/s]
SkipGroupNorm fusion will be skipped since symbolic shape inference disabled or failed.
fusion: 67%|██████▋ | 12/18 [00:00<00:00, 39.46it/s]
fusion: 100%|██████████| 18/18 [00:00<00:00, 146.75it/s]
fusion: 0%| | 0/18 [00:00<?, ?it/s]
symbolic shape inference disabled or failed.
fusion: 50%|█████ | 9/18 [00:00<00:00, 103.29it/s]
SkipGroupNorm fusion will be skipped since symbolic shape inference disabled or failed.
fusion: 67%|██████▋ | 12/18 [00:00<00:00, 135.08it/s]
fusion: 100%|██████████| 18/18 [00:00<00:00, 188.14it/s]
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
SDPA or Eager implementation or Use a StaticCache¶
Add --mop cache_implementation=static --iop cls_cache=StaticCache to use a StaticCache instead of a DynamicCache (default).
Add --mop attn_implementation=eager to explicitly select eager implementation for attention.
python -m onnx_diagnostic validate \
-m google/gemma-2b \
--run \
-v 1 \
--export custom \
-o dump_test \
--dtype float16 \
--device cpu \
--patch \
--no-quiet \
--opt default \
--rewrite \
--mop attn_implementation=eager \
--mop cache_implementation=static \
--iop cls_cache=StaticCache
Frequent examples used to test¶
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --device cuda --dtype float16 -o dump_models --patch --opt default+onnxruntime --export custom
About the exporter ‘custom’¶
It used to investigate issues or scenarios. It is usually very strict
and fails every time it falls in one unexpected situation.
It call experimental_experiment.torch_interpreter.to_onnx().
Some useful environment variables to set before running the command line.
DROPPATTERN=<pattern1,patterns2,...>: do not apply those patterns when optimizing a modelDUMPPATTERNS=<folder>: dumps all matched and applied nodes when a pattern is appliedPATTERN=<pattern1,pattern2,...>: increase verbosity for specific patterns to understand why one pattern was not applied