onnx_diagnostic.helpers.model_builder_helper¶
- onnx_diagnostic.helpers.model_builder_helper.create_model_builder(config: Any, model: torch.nn.Module, cache_dir: str, precision: str = 'fp32', execution_provider: str = 'cpu', verbose: int = 0, **extra_options) Model[source][source]¶
- Creates a model based on a configuration. The onnx model is returned by function - save_model_builder().- Parameters:
- config – configuration 
- cache_dir – cache directory 
- precision – precision 
- execution_provider – execution provider 
- verbose – verbosity 
- extra_options – extra options 
 
- Returns:
- model 
 
- onnx_diagnostic.helpers.model_builder_helper.download_model_builder_to_cache(url: str = 'https://raw.githubusercontent.com/microsoft/onnxruntime-genai/refs/heads/main/src/python/py/models/builder.py')[source][source]¶
- Downloads - builder.pyfrom the- https://github.com/microsoft/onnxruntime-genai/blob/main/src/python/py/models/builder.py.
- onnx_diagnostic.helpers.model_builder_helper.import_model_builder(module_name: str = 'builder') object[source][source]¶
- Imports the downloaded - model.by.
- onnx_diagnostic.helpers.model_builder_helper.save_model_builder(self, out_dir: str | None = '', verbose: int = 0) str | ModelProto[source][source]¶
- Saves a model created by function - create_model_builder(). If out_dir is empty or not specified, the function still returns the generated model.