onnx_diagnostic.torch_models.llms¶
- onnx_diagnostic.torch_models.llms.get_phi2(batch_size: int = 1, sequence_length: int = 30, sequence_length2: int = 3, dynamic_rope: bool = False, **kwargs) Dict[str, Any][source][source]¶
- Gets a non initialized model similar to microsoft/phi-2. - Parameters:
- batch_size – batch size 
- sequence_length – sequence length 
- sequence_length2 – new sequence length 
- dynamic_rope – use dynamic rope (see - transformers.LlamaConfig)
- kwargs – to overwrite the configuration, example - num_hidden_layers=1
 
- Returns:
- dictionary 
 - See Export Tiny-LLM with patches for an example with a similar model. 
- onnx_diagnostic.torch_models.llms.get_tiny_llm(batch_size: int = 2, sequence_length: int = 30, sequence_length2: int = 3, dynamic_rope: bool = False, use_static_cache: bool = False, **kwargs) Dict[str, Any][source][source]¶
- Gets a non initialized model similar to arnir0/Tiny-LLM. - Parameters:
- batch_size – batch size 
- sequence_length – sequence length 
- sequence_length2 – new sequence length 
- dynamic_rope – use dynamic rope (see - transformers.LlamaConfig)
- use_static_cache – use StaticCache instead of DynamicCache 
- kwargs – to overwrite the configuration, example - num_hidden_layers=1
 
- Returns:
- dictionary 
 - See Steel method forward to guess inputs and dynamic shapes (with Tiny-LLM) or Export Tiny-LLM with patches for examples.