-m onnx_diagnostic validate … validate a model id¶
The command line is a wrapper around function
onnx_diagnostic.torch_models.validate.validate_model().
Description¶
The command lines validate a model id available on HuggingFace but not only. It creates dummy inputs, runs the models on them, exports the model, measures the discrepancies…
usage: validate [-h] [-m MID] [-t TASK] [-e EXPORT] [--opt OPT] [-r | --run | --no-run] [-q | --quiet | --no-quiet] [--patch [PATCH ...]] [--rewrite | --no-rewrite]
[--stop-if-static STOP_IF_STATIC] [--same-as-trained | --no-same-as-trained] [--trained | --no-trained] [--inputs2 INPUTS2]
[--runtime {onnxruntime,torch,ref,orteval,orteval10}] [-o DUMP_FOLDER] [--drop DROP] [--opset OPSET] [--subfolder SUBFOLDER] [--ortfusiontype ORTFUSIONTYPE]
[-v VERBOSE] [--dtype DTYPE] [--device DEVICE] [--iop [KEY=VALUE ...]] [--mop [KEY=VALUE ...]] [--repeat REPEAT] [--warmup WARMUP] [--outnames OUTNAMES]
[--ort-logs | --no-ort-logs]
Prints out dummy inputs for a particular task or a model id.
If both mid and task are empty, the command line displays the list
of supported tasks.
options:
-h, --help show this help message and exit
-m MID, --mid MID model id, usually <author>/<name>
-t TASK, --task TASK force the task to use
-e EXPORT, --export EXPORT
export the model with this exporter
--opt OPT optimization to apply after the export
-r, --run, --no-run Runs the model to check it runs.
-q, --quiet, --no-quiet
Catches exception, reports them in the summary.
--patch [PATCH ...] Applies patches before exporting, it can be a boolean to enable to disable the patches or be more finetuned. It is possible to disable patch for torch by adding --patch "patch_sympy=False" --patch "patch_torch=False", default is True.
--rewrite, --no-rewrite
Applies rewrite before exporting.
--stop-if-static STOP_IF_STATIC
Raises an exception if a dynamic dimension becomes static.
--same-as-trained, --no-same-as-trained
Validates a model identical to the trained model but not trained.
--trained, --no-trained
Validates the trained model (requires downloading).
--inputs2 INPUTS2 Validates the model on a second set of inputs
to check the exported model supports dynamism. The values is used as an increment to the first set of inputs. A high value may trick a different behavior in the model and missed by the exporter.
--runtime {onnxruntime,torch,ref,orteval,orteval10}
onnx runtime to use, `onnxruntime` by default
-o DUMP_FOLDER, --dump-folder DUMP_FOLDER
A folder is created to dumps statistics,
exported program, onnx...
--drop DROP Drops the following inputs names, it should be a list
with comma separated values, example:
--drop position_ids
--opset OPSET onnx opset to use, 18 by default
--subfolder SUBFOLDER
Subfolder where to find the model and the configuration.
--ortfusiontype ORTFUSIONTYPE
Applies onnxruntime fusion, this parameter should contain the
model type or multiple values separated by `|`. `ALL` can be used
to run them all.
-v VERBOSE, --verbose VERBOSE
verbosity
--dtype DTYPE Changes dtype if necessary.
--device DEVICE Changes the device if necessary.
--iop [KEY=VALUE ...]
Additional input options, use to change the defaultinputs use to export, example:
--iop cls_cache=SlidingWindowCache
--iop cls_cache=StaticCache
--mop [KEY=VALUE ...]
Additional model options, use to change some parameters of the model, example:
--mop attn_implementation=sdpa --mop attn_implementation=eager
--mop "rope_scaling={'rope_type': 'dynamic', 'factor': 10.0}"
--repeat REPEAT number of times to run the model to measures inference time
--warmup WARMUP number of times to run the model to do warmup
--outnames OUTNAMES This comma separated list defines the output names the onnx exporter should use.
--ort-logs, --no-ort-logs
Enables onnxruntime logging when the session is created
If the model id is specified, one untrained version of it is instantiated.
Examples:
python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
--run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
--dtype float16 --device cuda --patch --export onnx-dynamo --opt ir
python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
--run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
--dtype float16 --device cuda --patch --export custom --opt default
python -m onnx_diagnostic validate -m microsoft/Phi-4-mini-reasoning \
--run -v 1 -o dump_test --no-quiet --repeat 2 --warmup 2 \
--dtype float16 --device cuda --export modelbuilder
position_ids is usually not needed, they can be removed by adding:
--drop position_ids
The behaviour may be modified compare the original configuration,
the following argument can be rope_scaling to dynamic:
--mop "rope_scaling={'rope_type': 'dynamic', 'factor': 10.0}""
You can profile the command line by running:
pyinstrument -m onnx_diagnostic validate ...
pyinstrument -r html -o profile.html -m onnx_diagnostic validate ...
Get the list of supported tasks¶
The task are the same defined by HuggingFace. The tool only supports a subset of them.
python -m onnx_diagnostic validate
-- list of supported tasks:
MoE
automatic-speech-recognition
feature-extraction
fill-mask
image-classification
image-text-to-text
image-to-video
mask-generation
object-detection
sentence-similarity
summarization
text-classification
text-generation
text-to-image
text2text-generation
zero-shot-image-classification
Get the default inputs for a specific task¶
This returns the dummy inputs for a specific task. There may be too many inputs. Only those the forward method defines are kept.
python -m onnx_diagnostic validate -t text-generation
-- inputs
+ input_ids : T7s2x3
+ attention_mask : T7s2x33
+ position_ids : T7s2x3
+ past_key_values : DynamicCache(key_cache=#4[T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16], value_cache=#4[T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16,T1s2x24x30x16])
-- dynamic_shapes
+ input_ids : {0:DYN(batch),1:DYN(seq_length)}
+ attention_mask : {0:DYN(batch),1:DYN(cache+seq)}
+ position_ids : {0:DYN(batch),1:DYN(cache+seq)}
+ past_key_values : #2[#4[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}],#4[{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)},{0:DYN(batch),2:DYN(cache_length)}]]
Validate dummy inputs for a model¶
The dummy inputs may not work for this model and this task. The following command line checks that. It is no use to export if this fails.
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter=None, optimization=None
[validate_model] dump_folder=None
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 3.258999640820548e-06s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 9.114999556913972e-06s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.09338221399957547s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x73dac02371a0>
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE past_key_values=#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]
[validate_model] second_input_keys=['inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run])
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22])
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache])
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1])
[validate_model] -- done (final)
-- summary --
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'rope_theta':10000.0,'rope_scaling':None,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'return_dict':True,'output_hidden_states':False,'torchscript':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'max_length':20,'min_length':0,'do_sample':False,'early_stopping':False,'num_beams':1,'temperature':1.0,'top_k':50,'top_p':1.0,'typical_p':1.0,'repetition_penalty':1.0,'length_penalty':1.0,'no_repeat_ngram_size':0,'encoder_no_repeat_ngram_size':0,'bad_words_ids':None,'num_return_sequences':1,'output_scores':False,'return_dict_in_generate':False,'forced_bos_token_id':None,'forced_eos_token_id':None,'remove_invalid_values':False,'exponential_decay_length_penalty':None,'suppress_tokens':None,'begin_suppress_tokens':None,'num_beam_groups':1,'diversity_penalty':0.0,'_name_or_path':'','transformers_version':'4.57.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:second_input_keys,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_torch_model,0.09686039299958793;
:time_preprocess_model_id,3.76499883714132e-06;
:time_run,0.007262043000082485;
:time_run22,0.008960803999798372;
:time_run2_batch1,0.006959404998269747;
:time_run2_empty_cache,0.0029476379986590473;
:time_total_validation_torch,0.02994616700016195;
:version_date,2025-10-08T16:50:55;
:version_device,;
:version_do_run,True;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,;
:version_exporter,;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_numpy,2.3.3;
:version_onnx,1.20.0;
:version_onnx_diagnostic,0.7.14;
:version_onnx_ir,0.1.11;
:version_onnxruntime,1.23.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,;
:version_ortfusiontype,;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.1;
:version_stop_if_static,0;
:version_torch,2.10.0.dev20251008+cu126;
:version_transformers,4.57.0.dev0;
:version_use_pretrained,False;
Validate and export a model¶
Exports a model given the task. Checks for discrepancies as well. The latency given are just for one run. It tells how long the benchmark runs but it is far from the latency measure we can get by running multiple times the same model.
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export export-nostrict -o dump_models --patch
[validate_model] dump into 'arnir0_Tiny-LLM-export-nostrict-op18'
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter='export-nostrict', optimization=None
[validate_model] dump_folder='dump_models/arnir0_Tiny-LLM-export-nostrict-op18'
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 2.8880003810627386e-06s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 5.578000127570704e-06s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.09905318100027216s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x73dac02371a0>
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE past_key_values=#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]
[validate_model] second_input_keys=['inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run])
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22])
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache])
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1])
[validate_model] -- export the model with 'export-nostrict', optimization=None
[validate_model] applies patches before exporting stop_if_static=0
[validate_model] run patched model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (patched run)
[validate_model] patched discrepancies=abs=0, rel=0
[call_torch_export_export] exporter='export-nostrict', strict=False, optimization=None
[call_torch_export_export] args=()
[call_torch_export_export] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[call_torch_export_export] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]])
[call_torch_export_export] dynamic_shapes_export_export=dict(input_ids:{0:DYNAMIC,1:DYNAMIC},attention_mask:{0:DYNAMIC,1:DYNAMIC},position_ids:{0:DYNAMIC,1:DYNAMIC},past_key_values:#2[#1[{0:DYNAMIC,2:DYNAMIC}],#1[{0:DYNAMIC,2:DYNAMIC}]])
[call_torch_export_export] export...
[call_torch_export_export] done (export) with 156 nodes
[validate_model] run exported model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (exported run)
[validate_model] exported discrepancies=abs=0, rel=0
[validate_model] -- dumps exported program in 'dump_models/arnir0_Tiny-LLM-export-nostrict-op18'...
[validate_model] done (dump ep)
[validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM-export-nostrict-op18'...
[validate_model] done (dump)
[validate_model] -- done (final)
-- summary --
:disc_exported_abs,0;
:disc_exported_dnan,0;
:disc_exported_n,204672.0;
:disc_exported_rel,0;
:disc_exported_sum,0.0;
:disc_patched_abs,0;
:disc_patched_dnan,0;
:disc_patched_n,204672.0;
:disc_patched_rel,0;
:disc_patched_sum,0.0;
:dump_folder,dump_models/arnir0_Tiny-LLM-export-nostrict-op18;
:dump_folder_name,arnir0_Tiny-LLM-export-nostrict-op18;
:export_args,();
:export_dynamic_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]);
:export_dynamic_shapes_export_export,dict(input_ids:{0:DYNAMIC,1:DYNAMIC},attention_mask:{0:DYNAMIC,1:DYNAMIC},position_ids:{0:DYNAMIC,1:DYNAMIC},past_key_values:#2[#1[{0:DYNAMIC,2:DYNAMIC}],#1[{0:DYNAMIC,2:DYNAMIC}]]);
:export_exporter,export-nostrict;
:export_graph_nodes,156;
:export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:export_optimization,;
:export_strict,False;
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'rope_theta':10000.0,'rope_scaling':None,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'return_dict':True,'output_hidden_states':False,'torchscript':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'max_length':20,'min_length':0,'do_sample':False,'early_stopping':False,'num_beams':1,'temperature':1.0,'top_k':50,'top_p':1.0,'typical_p':1.0,'repetition_penalty':1.0,'length_penalty':1.0,'no_repeat_ngram_size':0,'encoder_no_repeat_ngram_size':0,'bad_words_ids':None,'num_return_sequences':1,'output_scores':False,'return_dict_in_generate':False,'forced_bos_token_id':None,'forced_eos_token_id':None,'remove_invalid_values':False,'exponential_decay_length_penalty':None,'suppress_tokens':None,'begin_suppress_tokens':None,'num_beam_groups':1,'diversity_penalty':0.0,'_name_or_path':'','transformers_version':'4.57.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:second_input_keys,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_torch_model,0.10198116100036714;
:time_export_export,2.1892645889984124;
:time_preprocess_model_id,2.9689999792026356e-06;
:time_run,0.012442703999113292;
:time_run22,0.006035546999555663;
:time_run2_batch1,0.005684703999577323;
:time_run2_empty_cache,0.003500734001136152;
:time_run_exported,0.0235848669999541;
:time_run_patched,0.0029737260010733735;
:time_torch_export_export,2.1892538469983265;
:time_torch_export_export_n,1;
:time_total_exporter,2.271767264999653;
:time_total_validation_torch,0.030574487998819677;
:version_date,2025-10-08T16:50:55;
:version_device,;
:version_do_run,True;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,dump_models;
:version_exporter,export-nostrict;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_numpy,2.3.3;
:version_onnx,1.20.0;
:version_onnx_diagnostic,0.7.14;
:version_onnx_ir,0.1.11;
:version_onnxruntime,1.23.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,;
:version_ortfusiontype,;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.1;
:version_stop_if_static,0;
:version_torch,2.10.0.dev20251008+cu126;
:version_transformers,4.57.0.dev0;
:version_use_pretrained,False;
Validate ONNX discrepancies¶
Let’s export with ONNX this time and checks for discrepancies.
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export onnx-dynamo -o dump_models --patch --opt ir
[validate_model] dump into 'arnir0_Tiny-LLM-onnx-dynamo-ir-op18'
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter='onnx-dynamo', optimization='ir'
[validate_model] dump_folder='dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18'
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 2.1111998648848385e-05s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 9.618999683880247e-06s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.13721214700126438s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x7a8912deaa20>
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE past_key_values=#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]
[validate_model] second_input_keys=['inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run])
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22])
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache])
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1])
[validate_model] -- export the model with 'onnx-dynamo', optimization='ir'
[validate_model] applies patches before exporting stop_if_static=0
[validate_model] run patched model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (patched run)
[validate_model] patched discrepancies=abs=0, rel=0
[call_torch_export_onnx] exporter='onnx-dynamo', optimization='ir'
[call_torch_export_onnx] args=()
[call_torch_export_onnx] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[call_torch_export_onnx] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]])
[call_torch_export_onnx] export...
[call_torch_export_onnx] export_export_kwargs=dict(dynamo:bool,dynamic_shapes:dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]),opset_version:int)
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
Applied 39 of general pattern rewrite rules.
[call_torch_export_onnx] done (export)
[call_torch_export_onnx] starts optimization='ir'...
[call_torch_export_onnx] done (optimization)
[validate_model] dumps onnx program in 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18'...
[validate_model] done (dump onnx) in 0.0773827369994251
[validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18'...
[validate_model] done (dump)
[validation_model] -- delete the model
[validation_model] -- done
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour=None
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour=None
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00032628376058705446, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=6.556510925292969e-07, rel=0.0002520801563113858, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00037692802454639585, n=102336.0
[validate_model] -- done (final)
-- summary --
:disc_onnx_ort_run22_abs,8.344650268554688e-07;
:disc_onnx_ort_run22_dnan,0;
:disc_onnx_ort_run22_n,404160.0;
:disc_onnx_ort_run22_rel,0.00032628376058705446;
:disc_onnx_ort_run22_sum,0.039355116007072866;
:disc_onnx_ort_run2_batch1_abs,7.748603820800781e-07;
:disc_onnx_ort_run2_batch1_dnan,0;
:disc_onnx_ort_run2_batch1_n,102336.0;
:disc_onnx_ort_run2_batch1_rel,0.00037692802454639585;
:disc_onnx_ort_run2_batch1_sum,0.011718470417235949;
:disc_onnx_ort_run2_empty_cache_abs,6.556510925292969e-07;
:disc_onnx_ort_run2_empty_cache_dnan,0;
:disc_onnx_ort_run2_empty_cache_n,193152.0;
:disc_onnx_ort_run2_empty_cache_rel,0.0002520801563113858;
:disc_onnx_ort_run2_empty_cache_sum,0.012811366097139398;
:disc_onnx_ort_run_abs,7.748603820800781e-07;
:disc_onnx_ort_run_dnan,0;
:disc_onnx_ort_run_n,204672.0;
:disc_onnx_ort_run_rel,0.00044309172106863606;
:disc_onnx_ort_run_sum,0.02031988672524676;
:disc_patched_abs,0;
:disc_patched_dnan,0;
:disc_patched_n,204672.0;
:disc_patched_rel,0;
:disc_patched_sum,0.0;
:dump_folder,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18;
:dump_folder_name,arnir0_Tiny-LLM-onnx-dynamo-ir-op18;
:export_args,();
:export_dynamo,True;
:export_exporter,onnx-dynamo;
:export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:export_opset,18;
:export_optimization,ir;
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'rope_theta':10000.0,'rope_scaling':None,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'return_dict':True,'output_hidden_states':False,'torchscript':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'max_length':20,'min_length':0,'do_sample':False,'early_stopping':False,'num_beams':1,'temperature':1.0,'top_k':50,'top_p':1.0,'typical_p':1.0,'repetition_penalty':1.0,'length_penalty':1.0,'no_repeat_ngram_size':0,'encoder_no_repeat_ngram_size':0,'bad_words_ids':None,'num_return_sequences':1,'output_scores':False,'return_dict_in_generate':False,'forced_bos_token_id':None,'forced_eos_token_id':None,'remove_invalid_values':False,'exponential_decay_length_penalty':None,'suppress_tokens':None,'begin_suppress_tokens':None,'num_beam_groups':1,'diversity_penalty':0.0,'_name_or_path':'','transformers_version':'4.57.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:n_node_Add,10;
:n_node_And,2;
:n_node_Cast,2;
:n_node_Concat,16;
:n_node_Cos,1;
:n_node_Expand,6;
:n_node_Gather,1;
:n_node_GatherND,1;
:n_node_IsNaN,1;
:n_node_LessOrEqual,1;
:n_node_MatMul,11;
:n_node_Mul,14;
:n_node_Neg,2;
:n_node_Pow,3;
:n_node_Range,3;
:n_node_Reciprocal,3;
:n_node_ReduceMean,3;
:n_node_Reshape,13;
:n_node_Shape,5;
:n_node_Sigmoid,1;
:n_node_Sin,1;
:n_node_Slice,7;
:n_node_Softmax,1;
:n_node_Sqrt,3;
:n_node_Squeeze,4;
:n_node_Transpose,6;
:n_node_Unsqueeze,7;
:n_node_Where,2;
:n_node_functions,0;
:n_node_initializer_1,16;
:n_node_initializer_7,15;
:n_node_initializer_9,1;
:n_node_nodes,130;
:n_node_nodes_nocst,130;
:onnx_filename,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.onnx;
:onnx_ort_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs22,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs2_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_size,200563;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:run_feeds_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:run_feeds_inputs2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:run_feeds_inputs_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:run_feeds_inputs_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:run_output_inputs,#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96];
:run_output_inputs2,#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96];
:run_output_inputs_batch1,#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96];
:run_output_inputs_empty_cache,#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96];
:second_input_keys,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_onnx_ort,0.11477355500028352;
:time_create_torch_model,0.19481255699975009;
:time_export_onnx,5.4513369939995755;
:time_export_onnx_opt_ir,0.03462928800036025;
:time_onnx_save,0.0773827369994251;
:time_preprocess_model_id,1.6330013750120997e-06;
:time_run,0.011583038000026136;
:time_run22,0.010041985000498244;
:time_run2_batch1,0.010868147999644862;
:time_run2_empty_cache,0.004266702000677469;
:time_run_onnx_ort,0.009877211999992142;
:time_run_onnx_ort22,0.0018007939997914946;
:time_run_onnx_ort2_batch1,0.0012145569999120198;
:time_run_onnx_ort2_empty_cache,0.0014402619999600574;
:time_run_patched,0.004950991000441718;
:time_torch_export_export,1.7581138169989572;
:time_torch_export_export_n,1;
:time_total,8.547018258999742;
:time_total_exporter,7.416494999999486;
:time_total_validation_onnx,0.16053345599902968;
:time_total_validation_torch,0.04130309900028806;
:version_date,2025-10-08T16:51:10;
:version_device,;
:version_do_run,True;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,dump_models;
:version_exporter,onnx-dynamo;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_numpy,2.3.3;
:version_onnx,1.20.0;
:version_onnx_diagnostic,0.7.14;
:version_onnx_ir,0.1.11;
:version_onnxruntime,1.23.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,ir;
:version_ortfusiontype,;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.1;
:version_stop_if_static,0;
:version_torch,2.10.0.dev20251008+cu126;
:version_transformers,4.57.0.dev0;
:version_use_pretrained,False;
[runpythonerror]
~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_dynamic_shapes.py:264: UserWarning: # The axis name: batch will not be used, since it shares the same shape constraints with another axis: batch.
warnings.warn(
~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_dynamic_shapes.py:264: UserWarning: # The axis name: cache+seq will not be used, since it shares the same shape constraints with another axis: seq_length.
warnings.warn(
Run onnxruntime fusions¶
This option runs transformers optimizations
implemented in onnxruntime. The list of supported model_type can be found in the documentation
of function onnx_diagnostic.torch_models.validate.run_ort_fusion().
python -m onnx_diagnostic validate -m arnir0/Tiny-LLM --run -v 1 --export onnx-dynamo -o dump_models --patch --opt ir --ortfusiontype ALL
[validate_model] dump into 'arnir0_Tiny-LLM-onnx-dynamo-ir-op18'
[validate_model] validate model id 'arnir0/Tiny-LLM'
[validate_model] patch={'patch': True}
[validate_model] get dummy inputs with input_options=None...
[validate_model] rewrite=True, patch_kwargs={'patch': True, 'patch_transformers': True, 'patch_diffusers': True}, stop_if_static=0
[validate_model] exporter='onnx-dynamo', optimization='ir'
[validate_model] dump_folder='dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18'
[validate_model] output_names=None
[get_untrained_model_with_inputs] model_id='arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] use preinstalled 'arnir0/Tiny-LLM'
[get_untrained_model_with_inputs] architecture='LlamaForCausalLM'
[get_untrained_model_with_inputs] cls='LlamaConfig'
[get_untrained_model_with_inputs] task='text-generation'
[get_untrained_model_with_inputs] default config._attn_implementation=None
[get_untrained_model_with_inputs] package_source=transformers from ~/github/transformers/src/transformers/__init__.py
[get_untrained_model_with_inputs] instantiate model_id 'arnir0/Tiny-LLM', subfolder=None
[get_untrained_model_with_inputs] -- done(2) in 1.870099913503509e-05s
[get_untrained_model_with_inputs] instantiate_specific_model <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(3) in 1.3939001291873865e-05s (model is <class 'NoneType'>)
[get_untrained_model_with_inputs] instantiate_specific_model(2) <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>
[get_untrained_model_with_inputs] -- done(4) in 0.11810482500004582s (model is <class 'transformers.models.llama.modeling_llama.LlamaForCausalLM'>)
[get_untrained_model_with_inputs] use fct=<function get_inputs at 0x73c4170eab60>
[validate_model] --
[validate_model] task=text-generation
[validate_model] size=49.549072265625 Mb
[validate_model] n_weights=12.988992 millions parameters
[validate_model] +INPUT input_ids=T7s2x3
[validate_model] +INPUT attention_mask=T7s2x33
[validate_model] +INPUT position_ids=T7s2x3
[validate_model] +INPUT past_key_values=DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96])
[validate_model] +SHAPE input_ids={0:DYN(batch),1:DYN(seq_length)}
[validate_model] +SHAPE attention_mask={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE position_ids={0:DYN(batch),1:DYN(cache+seq)}
[validate_model] +SHAPE past_key_values=#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]
[validate_model] second_input_keys=['inputs2', 'inputs_empty_cache', 'inputs_batch1']
[validate_model] --
[validate_model] -- run the model inputs='inputs'...
[validate_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done ([run])
[validate_model] -- run the model inputs='inputs2'...
[validate_model] inputs2=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_model] done ([run22])
[validate_model] -- run the model inputs='inputs_empty_cache'...
[validate_model] inputs_empty_cache=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_model] done ([run2_empty_cache])
[validate_model] -- run the model inputs='inputs_batch1'...
[validate_model] inputs_batch1=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_model] done ([run2_batch1])
[validate_model] -- export the model with 'onnx-dynamo', optimization='ir'
[validate_model] applies patches before exporting stop_if_static=0
[validate_model] run patched model...
[validate_model] patched inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_model] done (patched run)
[validate_model] patched discrepancies=abs=0, rel=0
[call_torch_export_onnx] exporter='onnx-dynamo', optimization='ir'
[call_torch_export_onnx] args=()
[call_torch_export_onnx] kwargs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[call_torch_export_onnx] dynamic_shapes=dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]])
[call_torch_export_onnx] export...
[call_torch_export_onnx] export_export_kwargs=dict(dynamo:bool,dynamic_shapes:dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]),opset_version:int)
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `LlamaForCausalLM([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
Applied 39 of general pattern rewrite rules.
[call_torch_export_onnx] done (export)
[call_torch_export_onnx] starts optimization='ir'...
[call_torch_export_onnx] done (optimization)
[validate_model] dumps onnx program in 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18'...
[validate_model] done (dump onnx) in 0.09422409899889317
[validate_model] dumps statistics in 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18'...
[validate_model] done (dump)
[validation_model] -- delete the model
[validation_model] -- done
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour=None
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour=None
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00032628376058705446, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=6.556510925292969e-07, rel=0.0002520801563113858, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00037692802454639585, n=102336.0
[validate_model] run onnxruntime fusion for 'bart'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bart' in 0.17954504299996188, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bart.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbart'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbart'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'bert'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bert' in 0.1972392920015409, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbert'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'bert_keras'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bert_keras' in 0.21892898000078276, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_keras.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert_keras'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbert_keras'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'bert_tf'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'bert_tf' in 0.10983263300113322, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_tf.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortbert_tf'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortbert_tf'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'clip'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'clip' in 0.24755864799953997, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.clip.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortclip'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortclip'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'conformer'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'conformer' in 0.2165723589987465, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.conformer.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortconformer'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortconformer'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'gpt2'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'gpt2' in 0.23570889700022235, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt2'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortgpt2'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'gpt2_tf'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'gpt2_tf' in 0.22769285700087494, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2_tf.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt2_tf'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortgpt2_tf'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'gpt_neox'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'gpt_neox' in 0.21251322900025116, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt_neox.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortgpt_neox'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortgpt_neox'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'mmdit'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'mmdit' in 0.2456154070005141, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.mmdit.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortmmdit'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortmmdit'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'phi'
[validate_model] done 'phi' in 0.08197902699976112, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx'
[validate_onnx_model] missing 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx'
[validate_model] run onnxruntime fusion for 'sam2'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'sam2' in 0.19248915699972713, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.sam2.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortsam2'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortsam2'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00032628376058705446, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=6.556510925292969e-07, rel=0.0002520801563113858, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00037692802454639585, n=102336.0
[validate_model] run onnxruntime fusion for 'swin'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'swin' in 0.18016116299986606, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.swin.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortswin'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortswin'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 't5'
failed in shape inference <class 'AssertionError'>
[validate_model] done 't5' in 0.2332716140008415, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.t5.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortt5'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortt5'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'tnlr'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'tnlr' in 0.2301275829995575, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.tnlr.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='orttnlr'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='orttnlr'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] run onnxruntime fusion for 'unet'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'unet' in 0.2383976499986602, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.unet.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortunet'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortunet'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00032628376058705446, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=6.556510925292969e-07, rel=0.0002520801563113858, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00037692802454639585, n=102336.0
[validate_model] run onnxruntime fusion for 'vae'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'vae' in 0.11465761500039662, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vae.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortvae'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortvae'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00044309172106863606, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00032628376058705446, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=6.556510925292969e-07, rel=0.0002520801563113858, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=7.748603820800781e-07, rel=0.00037692802454639585, n=102336.0
[validate_model] run onnxruntime fusion for 'vit'
failed in shape inference <class 'AssertionError'>
[validate_model] done 'vit' in 0.1073118849999446, saved into 'dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vit.onnx'
[validate_onnx_model] verify onnx model with providers ['CPUExecutionProvider']..., flavour='ortvit'
[validate_onnx_model] runtime is onnxruntime
[validate_onnx_model] done (ort_session) flavour='ortvit'
[validate_onnx_model] -- make_feeds for 'inputs'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96]
[validate_onnx_model] discrepancies=abs=8.344650268554688e-07, rel=0.00038373230338287646, n=204672.0
[validate_onnx_model] -- make_feeds for 'inputs2'...
[validate_onnx_model] inputs=dict(input_ids:T7s3x4,attention_mask:T7s3x35,position_ids:T7s3x4,past_key_values:DynamicCache(key_cache=#1[T1s3x1x31x96], value_cache=#1[T1s3x1x31x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96]
[validate_onnx_model] discrepancies=abs=1.0132789611816406e-06, rel=0.00026781923006472165, n=404160.0
[validate_onnx_model] -- make_feeds for 'inputs_empty_cache'...
[validate_onnx_model] inputs=dict(input_ids:T7s2x3,attention_mask:T7s2x3,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x0x96], value_cache=#1[T1s2x1x0x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96]
[validate_onnx_model] discrepancies=abs=1.0728836059570312e-06, rel=0.00034613720184126256, n=193152.0
[validate_onnx_model] -- make_feeds for 'inputs_batch1'...
[validate_onnx_model] inputs=dict(input_ids:T7s1x3,attention_mask:T7s1x33,position_ids:T7s1x3,past_key_values:DynamicCache(key_cache=#1[T1s1x1x30x96], value_cache=#1[T1s1x1x30x96]))
[validate_onnx_model] ort inputs=dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96)
[validate_onnx_model] done (make_feeds)
[validate_onnx_model] run session...
[validate_onnx_model] done (run)
[validate_onnx_model] got=#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96]
[validate_onnx_model] discrepancies=abs=1.1026859283447266e-06, rel=0.0003551108443373418, n=102336.0
[validate_model] -- done (final)
-- summary --
:ERR_onnx_missing_ortphi,FileNotFoundError('dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.phi.onnx');
:ERR_opt_ort_phi,'method' object is not iterable;
:disc_onnx_ort_run22_abs,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortbart,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortbert,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortbert_keras,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortbert_tf,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortclip,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortconformer,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortgpt2,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortgpt2_tf,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortgpt_neox,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortmmdit,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortsam2,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortswin,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortt5,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_orttnlr,1.0132789611816406e-06;
:disc_onnx_ort_run22_abs_ortunet,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortvae,8.344650268554688e-07;
:disc_onnx_ort_run22_abs_ortvit,1.0132789611816406e-06;
:disc_onnx_ort_run22_dnan,0;
:disc_onnx_ort_run22_dnan_ortbart,0;
:disc_onnx_ort_run22_dnan_ortbert,0;
:disc_onnx_ort_run22_dnan_ortbert_keras,0;
:disc_onnx_ort_run22_dnan_ortbert_tf,0;
:disc_onnx_ort_run22_dnan_ortclip,0;
:disc_onnx_ort_run22_dnan_ortconformer,0;
:disc_onnx_ort_run22_dnan_ortgpt2,0;
:disc_onnx_ort_run22_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run22_dnan_ortgpt_neox,0;
:disc_onnx_ort_run22_dnan_ortmmdit,0;
:disc_onnx_ort_run22_dnan_ortsam2,0;
:disc_onnx_ort_run22_dnan_ortswin,0;
:disc_onnx_ort_run22_dnan_ortt5,0;
:disc_onnx_ort_run22_dnan_orttnlr,0;
:disc_onnx_ort_run22_dnan_ortunet,0;
:disc_onnx_ort_run22_dnan_ortvae,0;
:disc_onnx_ort_run22_dnan_ortvit,0;
:disc_onnx_ort_run22_n,404160.0;
:disc_onnx_ort_run22_n_ortbart,404160.0;
:disc_onnx_ort_run22_n_ortbert,404160.0;
:disc_onnx_ort_run22_n_ortbert_keras,404160.0;
:disc_onnx_ort_run22_n_ortbert_tf,404160.0;
:disc_onnx_ort_run22_n_ortclip,404160.0;
:disc_onnx_ort_run22_n_ortconformer,404160.0;
:disc_onnx_ort_run22_n_ortgpt2,404160.0;
:disc_onnx_ort_run22_n_ortgpt2_tf,404160.0;
:disc_onnx_ort_run22_n_ortgpt_neox,404160.0;
:disc_onnx_ort_run22_n_ortmmdit,404160.0;
:disc_onnx_ort_run22_n_ortsam2,404160.0;
:disc_onnx_ort_run22_n_ortswin,404160.0;
:disc_onnx_ort_run22_n_ortt5,404160.0;
:disc_onnx_ort_run22_n_orttnlr,404160.0;
:disc_onnx_ort_run22_n_ortunet,404160.0;
:disc_onnx_ort_run22_n_ortvae,404160.0;
:disc_onnx_ort_run22_n_ortvit,404160.0;
:disc_onnx_ort_run22_rel,0.00032628376058705446;
:disc_onnx_ort_run22_rel_ortbart,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortbert,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortbert_keras,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortbert_tf,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortclip,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortconformer,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortgpt2,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortgpt2_tf,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortgpt_neox,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortmmdit,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortsam2,0.00032628376058705446;
:disc_onnx_ort_run22_rel_ortswin,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortt5,0.00026781923006472165;
:disc_onnx_ort_run22_rel_orttnlr,0.00026781923006472165;
:disc_onnx_ort_run22_rel_ortunet,0.00032628376058705446;
:disc_onnx_ort_run22_rel_ortvae,0.00032628376058705446;
:disc_onnx_ort_run22_rel_ortvit,0.00026781923006472165;
:disc_onnx_ort_run22_sum,0.039355116007072866;
:disc_onnx_ort_run22_sum_ortbart,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortbert,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortbert_keras,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortbert_tf,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortclip,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortconformer,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortgpt2,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortgpt2_tf,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortgpt_neox,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortmmdit,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortsam2,0.039355116007072866;
:disc_onnx_ort_run22_sum_ortswin,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortt5,0.042834832951484714;
:disc_onnx_ort_run22_sum_orttnlr,0.042834832951484714;
:disc_onnx_ort_run22_sum_ortunet,0.039355116007072866;
:disc_onnx_ort_run22_sum_ortvae,0.039355116007072866;
:disc_onnx_ort_run22_sum_ortvit,0.042834832951484714;
:disc_onnx_ort_run2_batch1_abs,7.748603820800781e-07;
:disc_onnx_ort_run2_batch1_abs_ortbart,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortbert,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortbert_keras,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortbert_tf,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortclip,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortconformer,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortgpt2,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortgpt2_tf,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortgpt_neox,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortmmdit,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortsam2,7.748603820800781e-07;
:disc_onnx_ort_run2_batch1_abs_ortswin,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortt5,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_orttnlr,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_abs_ortunet,7.748603820800781e-07;
:disc_onnx_ort_run2_batch1_abs_ortvae,7.748603820800781e-07;
:disc_onnx_ort_run2_batch1_abs_ortvit,1.1026859283447266e-06;
:disc_onnx_ort_run2_batch1_dnan,0;
:disc_onnx_ort_run2_batch1_dnan_ortbart,0;
:disc_onnx_ort_run2_batch1_dnan_ortbert,0;
:disc_onnx_ort_run2_batch1_dnan_ortbert_keras,0;
:disc_onnx_ort_run2_batch1_dnan_ortbert_tf,0;
:disc_onnx_ort_run2_batch1_dnan_ortclip,0;
:disc_onnx_ort_run2_batch1_dnan_ortconformer,0;
:disc_onnx_ort_run2_batch1_dnan_ortgpt2,0;
:disc_onnx_ort_run2_batch1_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run2_batch1_dnan_ortgpt_neox,0;
:disc_onnx_ort_run2_batch1_dnan_ortmmdit,0;
:disc_onnx_ort_run2_batch1_dnan_ortsam2,0;
:disc_onnx_ort_run2_batch1_dnan_ortswin,0;
:disc_onnx_ort_run2_batch1_dnan_ortt5,0;
:disc_onnx_ort_run2_batch1_dnan_orttnlr,0;
:disc_onnx_ort_run2_batch1_dnan_ortunet,0;
:disc_onnx_ort_run2_batch1_dnan_ortvae,0;
:disc_onnx_ort_run2_batch1_dnan_ortvit,0;
:disc_onnx_ort_run2_batch1_n,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbart,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbert,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbert_keras,102336.0;
:disc_onnx_ort_run2_batch1_n_ortbert_tf,102336.0;
:disc_onnx_ort_run2_batch1_n_ortclip,102336.0;
:disc_onnx_ort_run2_batch1_n_ortconformer,102336.0;
:disc_onnx_ort_run2_batch1_n_ortgpt2,102336.0;
:disc_onnx_ort_run2_batch1_n_ortgpt2_tf,102336.0;
:disc_onnx_ort_run2_batch1_n_ortgpt_neox,102336.0;
:disc_onnx_ort_run2_batch1_n_ortmmdit,102336.0;
:disc_onnx_ort_run2_batch1_n_ortsam2,102336.0;
:disc_onnx_ort_run2_batch1_n_ortswin,102336.0;
:disc_onnx_ort_run2_batch1_n_ortt5,102336.0;
:disc_onnx_ort_run2_batch1_n_orttnlr,102336.0;
:disc_onnx_ort_run2_batch1_n_ortunet,102336.0;
:disc_onnx_ort_run2_batch1_n_ortvae,102336.0;
:disc_onnx_ort_run2_batch1_n_ortvit,102336.0;
:disc_onnx_ort_run2_batch1_rel,0.00037692802454639585;
:disc_onnx_ort_run2_batch1_rel_ortbart,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortbert,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortbert_keras,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortbert_tf,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortclip,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortconformer,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortgpt2,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortgpt2_tf,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortgpt_neox,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortmmdit,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortsam2,0.00037692802454639585;
:disc_onnx_ort_run2_batch1_rel_ortswin,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortt5,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_orttnlr,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_rel_ortunet,0.00037692802454639585;
:disc_onnx_ort_run2_batch1_rel_ortvae,0.00037692802454639585;
:disc_onnx_ort_run2_batch1_rel_ortvit,0.0003551108443373418;
:disc_onnx_ort_run2_batch1_sum,0.011718470417235949;
:disc_onnx_ort_run2_batch1_sum_ortbart,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortbert,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortbert_keras,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortbert_tf,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortclip,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortconformer,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortgpt2,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortgpt2_tf,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortgpt_neox,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortmmdit,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortsam2,0.011718470417235949;
:disc_onnx_ort_run2_batch1_sum_ortswin,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortt5,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_orttnlr,0.012457452539820224;
:disc_onnx_ort_run2_batch1_sum_ortunet,0.011718470417235949;
:disc_onnx_ort_run2_batch1_sum_ortvae,0.011718470417235949;
:disc_onnx_ort_run2_batch1_sum_ortvit,0.012457452539820224;
:disc_onnx_ort_run2_empty_cache_abs,6.556510925292969e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortbart,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortbert,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortbert_keras,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortbert_tf,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortclip,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortconformer,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortgpt2,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortgpt2_tf,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortgpt_neox,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortmmdit,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortsam2,6.556510925292969e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortswin,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortt5,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_orttnlr,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_abs_ortunet,6.556510925292969e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortvae,6.556510925292969e-07;
:disc_onnx_ort_run2_empty_cache_abs_ortvit,1.0728836059570312e-06;
:disc_onnx_ort_run2_empty_cache_dnan,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbart,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbert,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbert_keras,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortbert_tf,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortclip,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortconformer,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortgpt2,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortgpt_neox,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortmmdit,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortsam2,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortswin,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortt5,0;
:disc_onnx_ort_run2_empty_cache_dnan_orttnlr,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortunet,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortvae,0;
:disc_onnx_ort_run2_empty_cache_dnan_ortvit,0;
:disc_onnx_ort_run2_empty_cache_n,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbart,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbert,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbert_keras,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortbert_tf,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortclip,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortconformer,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortgpt2,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortgpt2_tf,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortgpt_neox,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortmmdit,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortsam2,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortswin,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortt5,193152.0;
:disc_onnx_ort_run2_empty_cache_n_orttnlr,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortunet,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortvae,193152.0;
:disc_onnx_ort_run2_empty_cache_n_ortvit,193152.0;
:disc_onnx_ort_run2_empty_cache_rel,0.0002520801563113858;
:disc_onnx_ort_run2_empty_cache_rel_ortbart,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortbert,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortbert_keras,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortbert_tf,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortclip,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortconformer,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortgpt2,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortgpt2_tf,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortgpt_neox,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortmmdit,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortsam2,0.0002520801563113858;
:disc_onnx_ort_run2_empty_cache_rel_ortswin,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortt5,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_orttnlr,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_rel_ortunet,0.0002520801563113858;
:disc_onnx_ort_run2_empty_cache_rel_ortvae,0.0002520801563113858;
:disc_onnx_ort_run2_empty_cache_rel_ortvit,0.00034613720184126256;
:disc_onnx_ort_run2_empty_cache_sum,0.012811366097139398;
:disc_onnx_ort_run2_empty_cache_sum_ortbart,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortbert,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortbert_keras,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortbert_tf,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortclip,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortconformer,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortgpt2,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortgpt2_tf,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortgpt_neox,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortmmdit,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortsam2,0.012811366097139398;
:disc_onnx_ort_run2_empty_cache_sum_ortswin,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortt5,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_orttnlr,0.020510222977463854;
:disc_onnx_ort_run2_empty_cache_sum_ortunet,0.012811366097139398;
:disc_onnx_ort_run2_empty_cache_sum_ortvae,0.012811366097139398;
:disc_onnx_ort_run2_empty_cache_sum_ortvit,0.020510222977463854;
:disc_onnx_ort_run_abs,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortbart,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortbert,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortbert_keras,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortbert_tf,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortclip,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortconformer,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortgpt2,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortgpt2_tf,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortgpt_neox,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortmmdit,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortsam2,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortswin,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortt5,8.344650268554688e-07;
:disc_onnx_ort_run_abs_orttnlr,8.344650268554688e-07;
:disc_onnx_ort_run_abs_ortunet,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortvae,7.748603820800781e-07;
:disc_onnx_ort_run_abs_ortvit,8.344650268554688e-07;
:disc_onnx_ort_run_dnan,0;
:disc_onnx_ort_run_dnan_ortbart,0;
:disc_onnx_ort_run_dnan_ortbert,0;
:disc_onnx_ort_run_dnan_ortbert_keras,0;
:disc_onnx_ort_run_dnan_ortbert_tf,0;
:disc_onnx_ort_run_dnan_ortclip,0;
:disc_onnx_ort_run_dnan_ortconformer,0;
:disc_onnx_ort_run_dnan_ortgpt2,0;
:disc_onnx_ort_run_dnan_ortgpt2_tf,0;
:disc_onnx_ort_run_dnan_ortgpt_neox,0;
:disc_onnx_ort_run_dnan_ortmmdit,0;
:disc_onnx_ort_run_dnan_ortsam2,0;
:disc_onnx_ort_run_dnan_ortswin,0;
:disc_onnx_ort_run_dnan_ortt5,0;
:disc_onnx_ort_run_dnan_orttnlr,0;
:disc_onnx_ort_run_dnan_ortunet,0;
:disc_onnx_ort_run_dnan_ortvae,0;
:disc_onnx_ort_run_dnan_ortvit,0;
:disc_onnx_ort_run_n,204672.0;
:disc_onnx_ort_run_n_ortbart,204672.0;
:disc_onnx_ort_run_n_ortbert,204672.0;
:disc_onnx_ort_run_n_ortbert_keras,204672.0;
:disc_onnx_ort_run_n_ortbert_tf,204672.0;
:disc_onnx_ort_run_n_ortclip,204672.0;
:disc_onnx_ort_run_n_ortconformer,204672.0;
:disc_onnx_ort_run_n_ortgpt2,204672.0;
:disc_onnx_ort_run_n_ortgpt2_tf,204672.0;
:disc_onnx_ort_run_n_ortgpt_neox,204672.0;
:disc_onnx_ort_run_n_ortmmdit,204672.0;
:disc_onnx_ort_run_n_ortsam2,204672.0;
:disc_onnx_ort_run_n_ortswin,204672.0;
:disc_onnx_ort_run_n_ortt5,204672.0;
:disc_onnx_ort_run_n_orttnlr,204672.0;
:disc_onnx_ort_run_n_ortunet,204672.0;
:disc_onnx_ort_run_n_ortvae,204672.0;
:disc_onnx_ort_run_n_ortvit,204672.0;
:disc_onnx_ort_run_rel,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortbart,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortbert,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortbert_keras,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortbert_tf,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortclip,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortconformer,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortgpt2,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortgpt2_tf,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortgpt_neox,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortmmdit,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortsam2,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortswin,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortt5,0.00038373230338287646;
:disc_onnx_ort_run_rel_orttnlr,0.00038373230338287646;
:disc_onnx_ort_run_rel_ortunet,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortvae,0.00044309172106863606;
:disc_onnx_ort_run_rel_ortvit,0.00038373230338287646;
:disc_onnx_ort_run_sum,0.02031988672524676;
:disc_onnx_ort_run_sum_ortbart,0.022044641082175076;
:disc_onnx_ort_run_sum_ortbert,0.022044641082175076;
:disc_onnx_ort_run_sum_ortbert_keras,0.022044641082175076;
:disc_onnx_ort_run_sum_ortbert_tf,0.022044641082175076;
:disc_onnx_ort_run_sum_ortclip,0.022044641082175076;
:disc_onnx_ort_run_sum_ortconformer,0.022044641082175076;
:disc_onnx_ort_run_sum_ortgpt2,0.022044641082175076;
:disc_onnx_ort_run_sum_ortgpt2_tf,0.022044641082175076;
:disc_onnx_ort_run_sum_ortgpt_neox,0.022044641082175076;
:disc_onnx_ort_run_sum_ortmmdit,0.022044641082175076;
:disc_onnx_ort_run_sum_ortsam2,0.02031988672524676;
:disc_onnx_ort_run_sum_ortswin,0.022044641082175076;
:disc_onnx_ort_run_sum_ortt5,0.022044641082175076;
:disc_onnx_ort_run_sum_orttnlr,0.022044641082175076;
:disc_onnx_ort_run_sum_ortunet,0.02031988672524676;
:disc_onnx_ort_run_sum_ortvae,0.02031988672524676;
:disc_onnx_ort_run_sum_ortvit,0.022044641082175076;
:disc_patched_abs,0;
:disc_patched_dnan,0;
:disc_patched_n,204672.0;
:disc_patched_rel,0;
:disc_patched_sum,0.0;
:dump_folder,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18;
:dump_folder_name,arnir0_Tiny-LLM-onnx-dynamo-ir-op18;
:export_args,();
:export_dynamo,True;
:export_exporter,onnx-dynamo;
:export_kwargs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:export_opset,18;
:export_optimization,ir;
:model_class,LlamaForCausalLM;
:model_config,{'vocab_size':32000,'max_position_embeddings':1024,'hidden_size':192,'intermediate_size':1024,'num_hidden_layers':1,'num_attention_heads':2,'num_key_value_heads':1,'hidden_act':'silu','initializer_range':0.02,'rms_norm_eps':1e-05,'pretraining_tp':1,'use_cache':True,'rope_theta':10000.0,'rope_scaling':None,'attention_bias':False,'attention_dropout':0.0,'mlp_bias':False,'head_dim':96,'return_dict':True,'output_hidden_states':False,'torchscript':False,'dtype':'float32','tie_word_embeddings':False,'chunk_size_feed_forward':0,'is_encoder_decoder':False,'is_decoder':False,'cross_attention_hidden_size':None,'add_cross_attention':False,'tie_encoder_decoder':False,'architectures':['LlamaForCausalLM'],'finetuning_task':None,'id2label':{0:'LABEL_0',1:'LABEL_1'},'label2id':{'LABEL_0':0,'LABEL_1':1},'task_specific_params':None,'problem_type':None,'tokenizer_class':None,'prefix':None,'bos_token_id':1,'pad_token_id':None,'eos_token_id':2,'sep_token_id':None,'decoder_start_token_id':None,'max_length':20,'min_length':0,'do_sample':False,'early_stopping':False,'num_beams':1,'temperature':1.0,'top_k':50,'top_p':1.0,'typical_p':1.0,'repetition_penalty':1.0,'length_penalty':1.0,'no_repeat_ngram_size':0,'encoder_no_repeat_ngram_size':0,'bad_words_ids':None,'num_return_sequences':1,'output_scores':False,'return_dict_in_generate':False,'forced_bos_token_id':None,'forced_eos_token_id':None,'remove_invalid_values':False,'exponential_decay_length_penalty':None,'suppress_tokens':None,'begin_suppress_tokens':None,'num_beam_groups':1,'diversity_penalty':0.0,'_name_or_path':'','transformers_version':'4.57.0.dev0','model_type':'llama','subfolder':None,'output_attentions':False};
:model_config_class,LlamaConfig;
:model_file,~/github/transformers/src/transformers/models/llama/modeling_llama.py;
:model_id,arnir0/Tiny-LLM;
:model_inputs,dict(input_ids:T7s2x3,attention_mask:T7s2x33,position_ids:T7s2x3,past_key_values:DynamicCache(key_cache=#1[T1s2x1x30x96], value_cache=#1[T1s2x1x30x96]));
:model_inputs_options,;
:model_module,transformers.models.llama.modeling_llama;
:model_nweights,12988992;
:model_shapes,dict(input_ids:{0:DYN(batch),1:DYN(seq_length)},attention_mask:{0:DYN(batch),1:DYN(cache+seq)},position_ids:{0:DYN(batch),1:DYN(cache+seq)},past_key_values:#2[#1[{0:DYN(batch),2:DYN(cache_length)}],#1[{0:DYN(batch),2:DYN(cache_length)}]]);
:model_size,51955968;
:model_subfolder,;
:model_task,text-generation;
:n_node_Add,10;
:n_node_And,2;
:n_node_Cast,2;
:n_node_Concat,16;
:n_node_Cos,1;
:n_node_Expand,6;
:n_node_Gather,1;
:n_node_GatherND,1;
:n_node_IsNaN,1;
:n_node_LessOrEqual,1;
:n_node_MatMul,11;
:n_node_Mul,14;
:n_node_Neg,2;
:n_node_Pow,3;
:n_node_Range,3;
:n_node_Reciprocal,3;
:n_node_ReduceMean,3;
:n_node_Reshape,13;
:n_node_Shape,5;
:n_node_Sigmoid,1;
:n_node_Sin,1;
:n_node_Slice,7;
:n_node_Softmax,1;
:n_node_Sqrt,3;
:n_node_Squeeze,4;
:n_node_Transpose,6;
:n_node_Unsqueeze,7;
:n_node_Where,2;
:n_node_functions,0;
:n_node_initializer_1,16;
:n_node_initializer_7,15;
:n_node_initializer_9,1;
:n_node_nodes,130;
:n_node_nodes_nocst,130;
:onnx_filename,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.onnx;
:onnx_filename_ortbart,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bart.onnx;
:onnx_filename_ortbert,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert.onnx;
:onnx_filename_ortbert_keras,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_keras.onnx;
:onnx_filename_ortbert_tf,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.bert_tf.onnx;
:onnx_filename_ortclip,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.clip.onnx;
:onnx_filename_ortconformer,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.conformer.onnx;
:onnx_filename_ortgpt2,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2.onnx;
:onnx_filename_ortgpt2_tf,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt2_tf.onnx;
:onnx_filename_ortgpt_neox,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.gpt_neox.onnx;
:onnx_filename_ortmmdit,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.mmdit.onnx;
:onnx_filename_ortsam2,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.sam2.onnx;
:onnx_filename_ortswin,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.swin.onnx;
:onnx_filename_ortt5,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.t5.onnx;
:onnx_filename_orttnlr,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.tnlr.onnx;
:onnx_filename_ortunet,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.unet.onnx;
:onnx_filename_ortvae,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vae.onnx;
:onnx_filename_ortvit,dump_models/arnir0_Tiny-LLM-onnx-dynamo-ir-op18/arnir0_Tiny-LLM-onnx-dynamo-ir-op18.ort.vit.onnx;
:onnx_ort_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs22,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbart,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbert,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbert_keras,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortbert_tf,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortclip,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortconformer,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortgpt2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortgpt2_tf,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortgpt_neox,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortmmdit,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortsam2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortswin,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortt5,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_orttnlr,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortunet,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortvae,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs22_ortvit,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:onnx_ort_inputs2_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbart,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbert,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbert_keras,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortbert_tf,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortclip,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortconformer,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortgpt2,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortgpt2_tf,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortgpt_neox,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortmmdit,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortsam2,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortswin,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortt5,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_orttnlr,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortunet,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortvae,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_batch1_ortvit,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:onnx_ort_inputs2_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbart,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbert,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbert_keras,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortbert_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortclip,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortconformer,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortgpt2,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortgpt2_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortgpt_neox,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortmmdit,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortsam2,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortswin,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortt5,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_orttnlr,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortunet,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortvae,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs2_empty_cache_ortvit,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:onnx_ort_inputs_ortbart,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortbert,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortbert_keras,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortbert_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortclip,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortconformer,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortgpt2,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortgpt2_tf,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortgpt_neox,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortmmdit,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortsam2,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortswin,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortt5,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_orttnlr,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortunet,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortvae,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_ort_inputs_ortvit,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:onnx_size,200563;
:onnx_size_ortbart,170020;
:onnx_size_ortbert,170020;
:onnx_size_ortbert_keras,170083;
:onnx_size_ortbert_tf,170054;
:onnx_size_ortclip,170020;
:onnx_size_ortconformer,170072;
:onnx_size_ortgpt2,170020;
:onnx_size_ortgpt2_tf,170052;
:onnx_size_ortgpt_neox,170061;
:onnx_size_ortmmdit,170029;
:onnx_size_ortsam2,201338;
:onnx_size_ortswin,170020;
:onnx_size_ortt5,170001;
:onnx_size_orttnlr,170020;
:onnx_size_ortunet,201338;
:onnx_size_ortvae,201328;
:onnx_size_ortvit,170010;
:opt_ort_bart_delta_node,-18;
:opt_ort_bart_duration,0.07894593899982283;
:opt_ort_bart_duration_save,0.04780875100004778;
:opt_ort_bart_n_nodes1,130;
:opt_ort_bart_n_nodes2,112;
:opt_ort_bert_delta_node,-18;
:opt_ort_bert_duration,0.08311969700116606;
:opt_ort_bert_duration_save,0.05471617900002457;
:opt_ort_bert_keras_delta_node,-18;
:opt_ort_bert_keras_duration,0.10090977499930887;
:opt_ort_bert_keras_duration_save,0.04190936099985265;
:opt_ort_bert_keras_n_nodes1,130;
:opt_ort_bert_keras_n_nodes2,112;
:opt_ort_bert_n_nodes1,130;
:opt_ort_bert_n_nodes2,112;
:opt_ort_bert_tf_delta_node,-18;
:opt_ort_bert_tf_duration,0.03410122500099533;
:opt_ort_bert_tf_duration_save,0.05867573599971365;
:opt_ort_bert_tf_n_nodes1,130;
:opt_ort_bert_tf_n_nodes2,112;
:opt_ort_clip_delta_node,-18;
:opt_ort_clip_duration,0.11332082400076615;
:opt_ort_clip_duration_save,0.06565980300001684;
:opt_ort_clip_n_nodes1,130;
:opt_ort_clip_n_nodes2,112;
:opt_ort_conformer_delta_node,-18;
:opt_ort_conformer_duration,0.08869768399927125;
:opt_ort_conformer_duration_save,0.06618240200077707;
:opt_ort_conformer_n_nodes1,130;
:opt_ort_conformer_n_nodes2,112;
:opt_ort_gpt2_delta_node,-18;
:opt_ort_gpt2_duration,0.11003393400096684;
:opt_ort_gpt2_duration_save,0.05834574400068959;
:opt_ort_gpt2_n_nodes1,130;
:opt_ort_gpt2_n_nodes2,112;
:opt_ort_gpt2_tf_delta_node,-18;
:opt_ort_gpt2_tf_duration,0.10467804800100566;
:opt_ort_gpt2_tf_duration_save,0.06054332900021109;
:opt_ort_gpt2_tf_n_nodes1,130;
:opt_ort_gpt2_tf_n_nodes2,112;
:opt_ort_gpt_neox_delta_node,-18;
:opt_ort_gpt_neox_duration,0.0842836729989358;
:opt_ort_gpt_neox_duration_save,0.06174840300081996;
:opt_ort_gpt_neox_n_nodes1,130;
:opt_ort_gpt_neox_n_nodes2,112;
:opt_ort_mmdit_delta_node,-18;
:opt_ort_mmdit_duration,0.09027307499854942;
:opt_ort_mmdit_duration_save,0.05811082299987902;
:opt_ort_mmdit_n_nodes1,130;
:opt_ort_mmdit_n_nodes2,112;
:opt_ort_phi_duration,0.0001366399992548395;
:opt_ort_sam2_delta_node,0;
:opt_ort_sam2_duration,0.0678471110004466;
:opt_ort_sam2_duration_save,0.058679092000602395;
:opt_ort_sam2_n_nodes1,130;
:opt_ort_sam2_n_nodes2,130;
:opt_ort_swin_delta_node,-18;
:opt_ort_swin_duration,0.09486658700006956;
:opt_ort_swin_duration_save,0.05080552199979138;
:opt_ort_swin_n_nodes1,130;
:opt_ort_swin_n_nodes2,112;
:opt_ort_t5_delta_node,-18;
:opt_ort_t5_duration,0.09223599699907936;
:opt_ort_t5_duration_save,0.06294324900045467;
:opt_ort_t5_n_nodes1,130;
:opt_ort_t5_n_nodes2,112;
:opt_ort_tnlr_delta_node,-18;
:opt_ort_tnlr_duration,0.1091862890007178;
:opt_ort_tnlr_duration_save,0.05829710299985891;
:opt_ort_tnlr_n_nodes1,130;
:opt_ort_tnlr_n_nodes2,112;
:opt_ort_unet_delta_node,0;
:opt_ort_unet_duration,0.10850740000023507;
:opt_ort_unet_duration_save,0.038478227999803494;
:opt_ort_unet_n_nodes1,130;
:opt_ort_unet_n_nodes2,130;
:opt_ort_vae_delta_node,0;
:opt_ort_vae_duration,0.04426976299873786;
:opt_ort_vae_duration_save,0.05696795000039856;
:opt_ort_vae_n_nodes1,130;
:opt_ort_vae_n_nodes2,130;
:opt_ort_vit_delta_node,-18;
:opt_ort_vit_duration,0.03197055000055116;
:opt_ort_vit_duration_save,0.061797229000148945;
:opt_ort_vit_n_nodes1,130;
:opt_ort_vit_n_nodes2,112;
:run_expected,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x33x96], value_cache=#1[T1s2x1x33x96]));
:run_expected22,CausalLMOutputWithPast(logits:T1s3x4x32000,past_key_values:DynamicCache(key_cache=#1[T1s3x1x35x96], value_cache=#1[T1s3x1x35x96]));
:run_expected2_batch1,CausalLMOutputWithPast(logits:T1s1x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s1x1x33x96], value_cache=#1[T1s1x1x33x96]));
:run_expected2_empty_cache,CausalLMOutputWithPast(logits:T1s2x3x32000,past_key_values:DynamicCache(key_cache=#1[T1s2x1x3x96], value_cache=#1[T1s2x1x3x96]));
:run_feeds_inputs,dict(input_ids:A7s2x3,attention_mask:A7s2x33,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x30x96,past_key_values_value_cache_0:A1s2x1x30x96);
:run_feeds_inputs2,dict(input_ids:A7s3x4,attention_mask:A7s3x35,position_ids:A7s3x4,past_key_values_key_cache_0:A1s3x1x31x96,past_key_values_value_cache_0:A1s3x1x31x96);
:run_feeds_inputs_batch1,dict(input_ids:A7s1x3,attention_mask:A7s1x33,position_ids:A7s1x3,past_key_values_key_cache_0:A1s1x1x30x96,past_key_values_value_cache_0:A1s1x1x30x96);
:run_feeds_inputs_empty_cache,dict(input_ids:A7s2x3,attention_mask:A7s2x3,position_ids:A7s2x3,past_key_values_key_cache_0:A1s2x1x0x96,past_key_values_value_cache_0:A1s2x1x0x96);
:run_output_inputs,#3[A1s2x3x32000,A1s2x1x33x96,A1s2x1x33x96];
:run_output_inputs2,#3[A1s3x4x32000,A1s3x1x35x96,A1s3x1x35x96];
:run_output_inputs_batch1,#3[A1s1x3x32000,A1s1x1x33x96,A1s1x1x33x96];
:run_output_inputs_empty_cache,#3[A1s2x3x32000,A1s2x1x3x96,A1s2x1x3x96];
:second_input_keys,inputs2,inputs_empty_cache,inputs_batch1;
:time_create_onnx_ort,0.06005029900006775;
:time_create_onnx_ort_ortbart,0.03031907299919112;
:time_create_onnx_ort_ortbert,0.037950851999994484;
:time_create_onnx_ort_ortbert_keras,0.03413530199941306;
:time_create_onnx_ort_ortbert_tf,0.024970647000372992;
:time_create_onnx_ort_ortclip,0.023296815999856335;
:time_create_onnx_ort_ortconformer,0.030088273000728805;
:time_create_onnx_ort_ortgpt2,0.025115615999311558;
:time_create_onnx_ort_ortgpt2_tf,0.04799224800080992;
:time_create_onnx_ort_ortgpt_neox,0.03206771400073194;
:time_create_onnx_ort_ortmmdit,0.04992643100013083;
:time_create_onnx_ort_ortsam2,0.028922267998495954;
:time_create_onnx_ort_ortswin,0.02598460300032457;
:time_create_onnx_ort_ortt5,0.026695050999478553;
:time_create_onnx_ort_orttnlr,0.032186124999498134;
:time_create_onnx_ort_ortunet,0.025828387999354163;
:time_create_onnx_ort_ortvae,0.030464159999610274;
:time_create_onnx_ort_ortvit,0.025345652000396512;
:time_create_torch_model,0.17608628000016324;
:time_export_onnx,4.945737816000474;
:time_export_onnx_opt_ir,0.0344373119987722;
:time_onnx_save,0.09422409899889317;
:time_ortfusion_ortbart,0.17954504299996188;
:time_ortfusion_ortbert,0.1972392920015409;
:time_ortfusion_ortbert_keras,0.21892898000078276;
:time_ortfusion_ortbert_tf,0.10983263300113322;
:time_ortfusion_ortclip,0.24755864799953997;
:time_ortfusion_ortconformer,0.2165723589987465;
:time_ortfusion_ortgpt2,0.23570889700022235;
:time_ortfusion_ortgpt2_tf,0.22769285700087494;
:time_ortfusion_ortgpt_neox,0.21251322900025116;
:time_ortfusion_ortmmdit,0.2456154070005141;
:time_ortfusion_ortphi,0.08197902699976112;
:time_ortfusion_ortsam2,0.19248915699972713;
:time_ortfusion_ortswin,0.18016116299986606;
:time_ortfusion_ortt5,0.2332716140008415;
:time_ortfusion_orttnlr,0.2301275829995575;
:time_ortfusion_ortunet,0.2383976499986602;
:time_ortfusion_ortvae,0.11465761500039662;
:time_ortfusion_ortvit,0.1073118849999446;
:time_preprocess_model_id,1.550999513710849e-06;
:time_run,0.013272827998662251;
:time_run22,0.015712382999481633;
:time_run2_batch1,0.016051347000029637;
:time_run2_empty_cache,0.007730548000836279;
:time_run_onnx_ort,0.007143183000152931;
:time_run_onnx_ort22,0.0018903710006270558;
:time_run_onnx_ort22_ortbart,0.0018046079985651886;
:time_run_onnx_ort22_ortbert,0.005430212000646861;
:time_run_onnx_ort22_ortbert_keras,0.0018837810002878541;
:time_run_onnx_ort22_ortbert_tf,0.0031001950010249857;
:time_run_onnx_ort22_ortclip,0.0030957769995438866;
:time_run_onnx_ort22_ortconformer,0.010513750999962213;
:time_run_onnx_ort22_ortgpt2,0.011571797000215156;
:time_run_onnx_ort22_ortgpt2_tf,0.0034993669996765675;
:time_run_onnx_ort22_ortgpt_neox,0.0025328909996460425;
:time_run_onnx_ort22_ortmmdit,0.005020794998927158;
:time_run_onnx_ort22_ortsam2,0.007946842999444925;
:time_run_onnx_ort22_ortswin,0.005107205999593134;
:time_run_onnx_ort22_ortt5,0.0019878089988196734;
:time_run_onnx_ort22_orttnlr,0.002154589999918244;
:time_run_onnx_ort22_ortunet,0.002240388999780407;
:time_run_onnx_ort22_ortvae,0.0019153069988533389;
:time_run_onnx_ort22_ortvit,0.002076968001347268;
:time_run_onnx_ort2_batch1,0.0012422630006767577;
:time_run_onnx_ort2_batch1_ortbart,0.0013169049998396076;
:time_run_onnx_ort2_batch1_ortbert,0.001294183000936755;
:time_run_onnx_ort2_batch1_ortbert_keras,0.0017076660005841404;
:time_run_onnx_ort2_batch1_ortbert_tf,0.002004642999963835;
:time_run_onnx_ort2_batch1_ortclip,0.002098691000355757;
:time_run_onnx_ort2_batch1_ortconformer,0.0013427339999907417;
:time_run_onnx_ort2_batch1_ortgpt2,0.0015992860007827403;
:time_run_onnx_ort2_batch1_ortgpt2_tf,0.001411816998370341;
:time_run_onnx_ort2_batch1_ortgpt_neox,0.0015094179998413892;
:time_run_onnx_ort2_batch1_ortmmdit,0.003949649999412941;
:time_run_onnx_ort2_batch1_ortsam2,0.001714432000881061;
:time_run_onnx_ort2_batch1_ortswin,0.0018637949997355463;
:time_run_onnx_ort2_batch1_ortt5,0.0015183739997155499;
:time_run_onnx_ort2_batch1_orttnlr,0.001500653999755741;
:time_run_onnx_ort2_batch1_ortunet,0.0013302370007295394;
:time_run_onnx_ort2_batch1_ortvae,0.004223486999762827;
:time_run_onnx_ort2_batch1_ortvit,0.002626067000164767;
:time_run_onnx_ort2_empty_cache,0.0013738060006289743;
:time_run_onnx_ort2_empty_cache_ortbart,0.0012237460014148382;
:time_run_onnx_ort2_empty_cache_ortbert,0.001810499999919557;
:time_run_onnx_ort2_empty_cache_ortbert_keras,0.0014964290003263159;
:time_run_onnx_ort2_empty_cache_ortbert_tf,0.0016633100003673462;
:time_run_onnx_ort2_empty_cache_ortclip,0.0015874709988565883;
:time_run_onnx_ort2_empty_cache_ortconformer,0.002240594001705176;
:time_run_onnx_ort2_empty_cache_ortgpt2,0.0013820549993397435;
:time_run_onnx_ort2_empty_cache_ortgpt2_tf,0.0017559099997015437;
:time_run_onnx_ort2_empty_cache_ortgpt_neox,0.003137966999929631;
:time_run_onnx_ort2_empty_cache_ortmmdit,0.0029202699988672975;
:time_run_onnx_ort2_empty_cache_ortsam2,0.0029495199996745214;
:time_run_onnx_ort2_empty_cache_ortswin,0.002241099000457325;
:time_run_onnx_ort2_empty_cache_ortt5,0.0020982999994885176;
:time_run_onnx_ort2_empty_cache_orttnlr,0.0016294659999402938;
:time_run_onnx_ort2_empty_cache_ortunet,0.0014982100001361687;
:time_run_onnx_ort2_empty_cache_ortvae,0.0017715809990477283;
:time_run_onnx_ort2_empty_cache_ortvit,0.0029419389993563527;
:time_run_onnx_ort_ortbart,0.0017067009994207183;
:time_run_onnx_ort_ortbert,0.0024899159998312825;
:time_run_onnx_ort_ortbert_keras,0.002310776999365771;
:time_run_onnx_ort_ortbert_tf,0.0015196730000752723;
:time_run_onnx_ort_ortclip,0.00266738800019084;
:time_run_onnx_ort_ortconformer,0.003821615000560996;
:time_run_onnx_ort_ortgpt2,0.0026783919984154636;
:time_run_onnx_ort_ortgpt2_tf,0.004461782000362291;
:time_run_onnx_ort_ortgpt_neox,0.003872208999382565;
:time_run_onnx_ort_ortmmdit,0.005297675999827334;
:time_run_onnx_ort_ortsam2,0.003343542999573401;
:time_run_onnx_ort_ortswin,0.001707791001535952;
:time_run_onnx_ort_ortt5,0.0017350050002278294;
:time_run_onnx_ort_orttnlr,0.001920751001307508;
:time_run_onnx_ort_ortunet,0.0017956030005734647;
:time_run_onnx_ort_ortvae,0.0017569550000189338;
:time_run_onnx_ort_ortvit,0.011191833998964285;
:time_run_patched,0.01046397099889873;
:time_torch_export_export,1.4438944839985197;
:time_torch_export_export_n,1;
:time_total,12.5046284809996;
:time_total_exporter,6.491607859999931;
:time_total_validation_onnx,0.10255143100039277;
:time_total_validation_torch,0.059140938999917125;
:version_date,2025-10-08T16:51:30;
:version_device,;
:version_do_run,True;
:version_drop_inputs,[];
:version_dtype,;
:version_dump_folder,dump_models;
:version_exporter,onnx-dynamo;
:version_inputs2,1;
:version_model_id,arnir0/Tiny-LLM;
:version_numpy,2.3.3;
:version_onnx,1.20.0;
:version_onnx_diagnostic,0.7.14;
:version_onnx_ir,0.1.11;
:version_onnxruntime,1.23.0;
:version_onnxscript,?;
:version_opset,18;
:version_optimization,ir;
:version_ortbart_hidden_size,192;
:version_ortbart_num_attention_heads,2;
:version_ortbert_hidden_size,192;
:version_ortbert_keras_hidden_size,192;
:version_ortbert_keras_num_attention_heads,2;
:version_ortbert_num_attention_heads,2;
:version_ortbert_tf_hidden_size,192;
:version_ortbert_tf_num_attention_heads,2;
:version_ortclip_hidden_size,192;
:version_ortclip_num_attention_heads,2;
:version_ortconformer_hidden_size,192;
:version_ortconformer_num_attention_heads,2;
:version_ortfusiontype,ALL;
:version_ortgpt2_hidden_size,192;
:version_ortgpt2_num_attention_heads,2;
:version_ortgpt2_tf_hidden_size,192;
:version_ortgpt2_tf_num_attention_heads,2;
:version_ortgpt_neox_hidden_size,192;
:version_ortgpt_neox_num_attention_heads,2;
:version_ortmmdit_hidden_size,192;
:version_ortmmdit_num_attention_heads,2;
:version_ortphi_hidden_size,192;
:version_ortphi_num_attention_heads,2;
:version_ortsam2_hidden_size,192;
:version_ortsam2_num_attention_heads,2;
:version_ortswin_hidden_size,192;
:version_ortswin_num_attention_heads,2;
:version_ortt5_hidden_size,192;
:version_ortt5_num_attention_heads,2;
:version_orttnlr_hidden_size,192;
:version_orttnlr_num_attention_heads,2;
:version_ortunet_hidden_size,192;
:version_ortunet_num_attention_heads,2;
:version_ortvae_hidden_size,192;
:version_ortvae_num_attention_heads,2;
:version_ortvit_hidden_size,192;
:version_ortvit_num_attention_heads,2;
:version_patch,{'patch': True};
:version_patch_kwargs,{'patch':True,'patch_transformers':True,'patch_diffusers':True};
:version_quiet,False;
:version_rewrite,True;
:version_runtime,onnxruntime;
:version_same_as_pretrained,False;
:version_scipy,1.16.1;
:version_stop_if_static,0;
:version_torch,2.10.0.dev20251008+cu126;
:version_transformers,4.57.0.dev0;
:version_use_pretrained,False;
[runpythonerror]
~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_dynamic_shapes.py:264: UserWarning: # The axis name: batch will not be used, since it shares the same shape constraints with another axis: batch.
warnings.warn(
~/vv/this312/lib/python3.12/site-packages/torch/onnx/_internal/exporter/_dynamic_shapes.py:264: UserWarning: # The axis name: cache+seq will not be used, since it shares the same shape constraints with another axis: seq_length.
warnings.warn(
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
Model producer not matched: Expected "keras2onnx", Got "pytorch".Please specify correct --model_type parameter.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
Model producer not matched: Expected "tf2onnx", Got "pytorch".Please specify correct --model_type parameter.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
Model producer not matched: Expected "tf2onnx", Got "pytorch".Please specify correct --model_type parameter.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
fusion: 0%| | 0/5 [00:00<?, ?it/s]
The optimized model requires LayerNormalization with broadcast support. Please use onnxruntime-gpu>=1.21 for inference.
fusion: 20%|██ | 1/5 [00:00<00:00, 13.56it/s]
fusion: 100%|██████████| 5/5 [00:00<00:00, 61.22it/s]
sam2 fusion: 0%| | 0/12 [00:00<?, ?it/s]
symbolic shape inference disabled or failed.
sam2 fusion: 50%|█████ | 6/12 [00:00<00:00, 99.20it/s]
sam2 fusion: 100%|██████████| 12/12 [00:00<00:00, 189.94it/s]
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
fusion: 0%| | 0/18 [00:00<?, ?it/s]
symbolic shape inference disabled or failed.
fusion: 50%|█████ | 9/18 [00:00<00:00, 93.60it/s]
SkipGroupNorm fusion will be skipped since symbolic shape inference disabled or failed.
fusion: 67%|██████▋ | 12/18 [00:00<00:00, 123.29it/s]
fusion: 100%|██████████| 18/18 [00:00<00:00, 175.45it/s]
fusion: 100%|██████████| 18/18 [00:00<00:00, 175.10it/s]
fusion: 0%| | 0/18 [00:00<?, ?it/s]
symbolic shape inference disabled or failed.
fusion: 50%|█████ | 9/18 [00:00<00:00, 388.86it/s]
SkipGroupNorm fusion will be skipped since symbolic shape inference disabled or failed.
fusion: 67%|██████▋ | 12/18 [00:00<00:00, 477.10it/s]
fusion: 100%|██████████| 18/18 [00:00<00:00, 577.23it/s]
symbolic shape inference disabled or failed.
symbolic shape inference disabled or failed.
Sdpa or Eager implementation or Use a StaticCache¶
Add --mop cache_implementation=static --iop cls_cache=StaticCache to use a StaticCache instead of a DynamicCache (default).
Add --mop attn_implementation=eager to explicitly select eager implementation for attention.
python -m onnx_diagnostic validate \
-m google/gemma-2b \
--run \
-v 1 \
--export custom \
-o dump_test \
--dtype float16 \
--device cpu \
--patch \
--no-quiet \
--opt default \
--rewrite \
--mop attn_implementation=eager \
--mop cache_implementation=static \
--iop cls_cache=StaticCache