import datetime
import enum
import glob
import io
import os
import pprint
import re
import warnings
import zipfile
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union
import numpy as np
import pandas
from pandas.api.types import is_numeric_dtype, is_datetime64_any_dtype
from .helper import string_sig
BUCKET_SCALES_VALUES = np.array(
[-np.inf, -20, -10, -5, -2, 0, 2, 5, 10, 20, 100, 200, 300, 400, np.inf], dtype=float
)
BUCKET_SCALES = BUCKET_SCALES_VALUES / 100 + 1
[docs]
def enumerate_csv_files(
data: Union[
pandas.DataFrame, List[Union[str, Tuple[str, str]]], str, Tuple[str, str, str, str]
],
verbose: int = 0,
filtering: Optional[Callable[[str], bool]] = None,
) -> Iterator[Union[pandas.DataFrame, str, Tuple[str, str, str, str]]]:
"""
Enumerates files considered for the aggregation.
Only csv files are considered.
If a zip file is given, the function digs into the zip files and
loops over csv candidates.
:param data: dataframe with the raw data or a file or list of files
:param vrbose: verbosity
:param filtering: function to filter in or out files in zip files,
must return true to keep the file, false to skip it.
:return: a generator yielding tuples with the filename, date, full path and zip file
data can contains:
* a dataframe
* a string for a filename, zip or csv
* a list of string
* a tuple
"""
if not isinstance(data, list):
data = [data]
for itn, filename in enumerate(data):
if isinstance(filename, pandas.DataFrame):
if verbose:
print(f"[enumerate_csv_files] data[{itn}] is a dataframe")
yield filename
continue
if isinstance(filename, tuple):
# A file in a zipfile
if verbose:
print(f"[enumerate_csv_files] data[{itn}] is {filename!r}")
yield filename
continue
if os.path.exists(filename):
ext = os.path.splitext(filename)[-1]
if ext == ".csv":
# We check the first line is ok.
if verbose:
print(f"[enumerate_csv_files] data[{itn}] is a csv file: {filename!r}]")
dt = datetime.datetime.fromtimestamp(os.stat(filename).st_mtime)
du = dt.strftime("%Y-%m-%d %H:%M:%S")
yield (os.path.split(filename)[-1], du, filename, "")
continue
if ext == ".zip":
if verbose:
print(f"[enumerate_csv_files] data[{itn}] is a zip file: {filename!r}]")
zf = zipfile.ZipFile(filename, "r")
for ii, info in enumerate(zf.infolist()):
name = info.filename
if filtering is None:
ext = os.path.splitext(name)[-1]
if ext != ".csv":
continue
elif not filtering(name):
continue
if verbose:
print(
f"[enumerate_csv_files] data[{itn}][{ii}] is a csv file: {name!r}]"
)
with zf.open(name) as zzf:
first_line = zzf.readline()
if b"," not in first_line:
continue
yield (
os.path.split(name)[-1],
"%04d-%02d-%02d %02d:%02d:%02d" % info.date_time,
name,
filename,
)
zf.close()
continue
raise AssertionError(f"Unexpected format {filename!r}, cannot read it.")
# filename is a pattern.
found = glob.glob(filename)
if verbose and not found:
print(f"[enumerate_csv_files] unable to find file in {filename!r}")
for ii, f in enumerate(found):
if verbose:
print(f"[enumerate_csv_files] data[{itn}][{ii}] {f!r} from {filename!r}")
yield from enumerate_csv_files(f, verbose=verbose, filtering=filtering)
[docs]
def open_dataframe(
data: Union[str, Tuple[str, str, str, str], pandas.DataFrame],
) -> pandas.DataFrame:
"""
Opens a filename.
:param data: a dataframe, a filename, a tuple indicating the file is coming
from a zip file
:return: a dataframe
"""
if isinstance(data, pandas.DataFrame):
return data
if isinstance(data, str):
df = pandas.read_csv(data)
df["RAWFILENAME"] = data
return df
if isinstance(data, tuple):
if not data[-1]:
df = pandas.read_csv(data[2])
df["RAWFILENAME"] = data[2]
return df
zf = zipfile.ZipFile(data[-1])
with zf.open(data[2]) as f:
df = pandas.read_csv(f)
df["RAWFILENAME"] = f"{data[-1]}/{data[2]}"
zf.close()
return df
raise ValueError(f"Unexpected value for data: {data!r}")
[docs]
class CubeViewDef:
"""
Defines how to compute a view.
:param key_index: keys to put in the row index
:param values: values to show
:param ignore_unique: ignore keys with a unique value
:param order: to reorder key in columns index
:param key_agg: aggregate according to these columns before
creating the view
:param agg_args: see :meth:`pandas.core.groupby.DataFrameGroupBy.agg`,
it can be also a callable to return a different aggregation
method depending on the column name
:param agg_kwargs: see :meth:`pandas.core.groupby.DataFrameGroupBy.agg`
:param agg_multi: aggregation over multiple columns
:param ignore_columns: ignore the following columns if known to overload the view
:param keep_columns_in_index: keeps the columns even if there is only one unique value
:param dropna: drops rows with nan if not relevant
:param transpose: transpose
:param f_highlight: to highlights some values
:param name: name of the view, used mostly to debug
:param plots: adds plot to the Excel sheet
:param no_index: remove the index (but keeps the columns)
"""
[docs]
class HighLightKind(enum.IntEnum):
NONE = 0
RED = 1
GREEN = 2
def __init__(
self,
key_index: Sequence[str],
values: Sequence[str],
ignore_unique: bool = True,
order: Optional[Sequence[str]] = None,
key_agg: Optional[Sequence[str]] = None,
agg_args: Union[Sequence[Any], Callable[[str], Any]] = ("sum",),
agg_kwargs: Optional[Dict[str, Any]] = None,
agg_multi: Optional[
Dict[str, Callable[[pandas.core.groupby.DataFrameGroupBy], pandas.Series]]
] = None,
ignore_columns: Optional[Sequence[str]] = None,
keep_columns_in_index: Optional[Sequence[str]] = None,
dropna: bool = True,
transpose: bool = False,
f_highlight: Optional[Callable[[Any], "CubeViewDef.HighLightKind"]] = None,
name: Optional[str] = None,
no_index: bool = False,
plots: bool = False,
):
self.key_index = key_index
self.values = values
self.ignore_unique = ignore_unique
self.order = order
self.key_agg = key_agg
self.agg_args = agg_args
self.agg_kwargs = agg_kwargs
self.agg_multi = agg_multi
self.dropna = dropna
self.ignore_columns = ignore_columns
self.keep_columns_in_index = keep_columns_in_index
self.f_highlight = f_highlight
self.transpose = transpose
self.name = name
self.no_index = no_index
self.plots = plots
def __repr__(self) -> str:
"usual"
return string_sig(self) # type: ignore[arg-type]
[docs]
def apply_excel_style(
filename_or_writer: Any,
f_highlights: Optional[Dict[str, Callable[[Any], CubeViewDef.HighLightKind]]] = None,
):
"""
Applies styles on all sheets in a file unless the sheet is too big.
:param filename_or_writer: filename, modified inplace
:param f_highlight: color function to apply, one per sheet
"""
from openpyxl import load_workbook
from openpyxl.styles import Alignment
from openpyxl.utils import get_column_letter
from openpyxl.styles import Font # , PatternFill, numbers
if isinstance(filename_or_writer, str):
workbook = load_workbook(filename_or_writer)
save = True
else:
workbook = filename_or_writer.book
save = False
left = Alignment(horizontal="left")
left_shrink = Alignment(horizontal="left", shrink_to_fit=True)
right = Alignment(horizontal="right")
font_colors = {
CubeViewDef.HighLightKind.GREEN: Font(color="00AA00"),
CubeViewDef.HighLightKind.RED: Font(color="FF0000"),
}
for name in workbook.sheetnames:
f_highlight = f_highlights.get(name, None) if f_highlights else None
sheet = workbook[name]
n_rows = sheet.max_row
n_cols = sheet.max_column
if n_rows * n_cols > 2**18:
# Too big.
continue
co: Dict[int, int] = {}
sizes: Dict[int, int] = {}
cols = set()
for i in range(1, n_rows):
for j, cell in enumerate(sheet[i]):
if j > n_cols:
break
cols.add(cell.column)
if isinstance(cell.value, float):
co[j] = co.get(j, 0) + 1
elif isinstance(cell.value, str):
sizes[cell.column] = max(sizes.get(cell.column, 0), len(cell.value))
for k, v in sizes.items():
c = get_column_letter(k)
sheet.column_dimensions[c].width = min(max(8, v), 30)
for k in cols:
if k not in sizes:
c = get_column_letter(k)
sheet.column_dimensions[c].width = 15
for i in range(1, n_rows):
for j, cell in enumerate(sheet[i]):
if j > n_cols:
break
if isinstance(cell.value, pandas.Timestamp):
cell.alignment = right
dt = cell.value.to_pydatetime()
cell.value = dt
cell.number_format = (
"YYYY-MM-DD"
if (
dt.hour == 0
and dt.minute == 0
and dt.second == 0
and dt.microsecond == 0
)
else "YYYY-MM-DD 00:00:00"
)
elif isinstance(cell.value, (float, int)):
cell.alignment = right
x = abs(cell.value)
if int(x) == x:
cell.number_format = "0"
elif x > 5000:
cell.number_format = "# ##0"
elif x >= 500:
cell.number_format = "0.0"
elif x >= 50:
cell.number_format = "0.00"
elif x >= 5:
cell.number_format = "0.000"
elif x > 0.5:
cell.number_format = "0.0000"
elif x > 0.005:
cell.number_format = "0.00000"
else:
cell.number_format = "0.000E+00"
if f_highlight:
h = f_highlight(cell.value)
if h in font_colors:
cell.font = font_colors[h]
elif isinstance(cell.value, str) and len(cell.value) > 70:
cell.alignment = left_shrink
else:
cell.alignment = left
if f_highlight:
h = f_highlight(cell.value)
if h in font_colors:
cell.font = font_colors[h]
if save:
workbook.save(filename_or_writer)
[docs]
class CubePlot:
"""
Creates a plot.
"""
def __init__(
self, df: pandas.DataFrame, kind: str = "bar", orientation="col", split: bool = True
):
self.df = df.copy()
self.kind = kind
self.orientation = orientation
self.split = split
if isinstance(self.df.columns, pandas.MultiIndex):
self.df.columns = ["/".join(map(str, i)) for i in self.df.columns]
if isinstance(self.df.index, pandas.MultiIndex):
self.df.index = ["/".join(map(str, i)) for i in self.df.index]
def __repr__(self) -> str:
"usual"
return string_sig(self) # type: ignore[arg-type]
[docs]
def to_images(
self, verbose: int = 0, merge: bool = True, title_suffix: Optional[str] = None
):
"""
Converts data into plots and images.
"""
import matplotlib.pyplot as plt
df = self.df.T if self.orientation == "row" else self.df
imgs = []
if verbose:
from tqdm import tqdm
loop = tqdm(df.columns)
else:
loop = df.columns
title_suffix = f"\n{title_suffix}" if title_suffix else ""
if merge:
nn = len(df.columns) // 2
nn += nn % 2
fig, axs = plt.subplots(nn, 2, figsize=(12, 3 * nn * df.shape[0] / 12))
pos = 0
for c in loop:
ax = axs[pos // 2, pos % 2]
df[c].plot.barh(title=f"{c}{title_suffix}", ax=ax)
ax.tick_params(axis="both", which="major", labelsize=8)
ax.grid(True)
pos += 1 # noqa: SIM113
fig.tight_layout()
imgdata = io.BytesIO()
fig.savefig(imgdata, format="png")
imgs.append(imgdata.getvalue())
plt.close()
else:
for c in loop:
fig, ax = plt.subplots(1, 1, figsize=(3, 3))
df[c].plot.barh(title=c, ax=ax)
ax.tick_params(axis="both", which="major", labelsize=8)
ax.grid(True)
fig.tight_layout()
imgdata = io.BytesIO()
fig.savefig(imgdata, format="png")
imgs.append(imgdata.getvalue())
plt.close()
return imgs
[docs]
def to_charts(self, writer: pandas.ExcelWriter, sheet, empty_row: int = 1):
"""
Draws plots on a page.
The data is copied on this page.
:param name: sheet name
:param writer: writer (from pandas)
:param sheet_name: sheet
:param graph_index: graph index
:return: list of graph
"""
assert self.split, f"Not implemented if split={self.split}"
assert self.orientation == "row", f"Not implemented if orientation={self.orientation}"
workbook = writer.book
labels = list(self.df.columns)
sheet.write_row(empty_row, 0, labels)
charts = []
pos = empty_row + 1
for i in self.df.index:
values = self.df.loc[i, :].tolist()
values = [("" if isinstance(v, float) and np.isnan(v) else v) for v in values]
sheet.write_row(pos, 0, values)
chart = workbook.add_chart({"type": "bar"})
chart.add_series(
{
"name": i,
"categories": [i, 1, empty_row, len(labels), empty_row],
"values": [i, 1, pos, len(labels), pos],
}
)
chart.set_title({"name": i})
charts.append(chart)
pos += 1
return charts
[docs]
class CubeLogs:
"""
Processes logs coming from experiments.
"""
def __init__(
self,
data: Any,
time: str = "date",
keys: Sequence[str] = ("version_.*", "model_.*"),
values: Sequence[str] = ("time_.*", "disc_.*"),
ignored: Sequence[str] = (),
recent: bool = False,
formulas: Optional[
Union[
Sequence[str],
Dict[str, Union[str, Callable[[pandas.DataFrame], pandas.Series]]],
]
] = None,
fill_missing: Optional[Sequence[Tuple[str, Any]]] = None,
keep_last_date: bool = False,
):
self._data = data
self._time = time
self._keys = keys
self._values = values
self._ignored = ignored
self.recent = recent
self._formulas = formulas
self.fill_missing = fill_missing
self.keep_last_date = keep_last_date
[docs]
def post_load_process_piece(
self, df: pandas.DataFrame, unique: bool = False
) -> pandas.DataFrame:
"""
Postprocesses a piece when a cube is made of multiple pieces
before it gets merged.
"""
if not self.fill_missing:
return df
missing = dict(self.fill_missing)
for k, v in missing.items():
if k not in df.columns:
df[k] = v
return df
[docs]
def load(self, verbose: int = 0):
"""Loads and preprocesses the data. Returns self."""
if isinstance(self._data, pandas.DataFrame):
if verbose:
print(f"[CubeLogs.load] load from dataframe, shape={self._data.shape}")
self.data = self.post_load_process_piece(self._data, unique=True)
if verbose:
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
elif isinstance(self._data, list) and all(isinstance(r, dict) for r in self._data):
if verbose:
print(f"[CubeLogs.load] load from list of dicts, n={len(self._data)}")
self.data = pandas.DataFrame(self.post_load_process_piece(self._data, unique=True))
if verbose:
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
elif isinstance(self._data, list) and all(
isinstance(r, pandas.DataFrame) for r in self._data
):
if verbose:
print(f"[CubeLogs.load] load from list of DataFrame, n={len(self._data)}")
self.data = pandas.concat(
[self.post_load_process_piece(c) for c in self._data], axis=0
)
if verbose:
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
elif isinstance(self._data, list):
if verbose:
print("[CubeLogs.load] load from list of Cubes")
cubes = []
for item in enumerate_csv_files(self._data, verbose=verbose):
df = open_dataframe(item)
cube = CubeLogs(
df,
time=self._time,
keys=self._keys,
values=self._values,
ignored=self._ignored,
recent=self.recent,
)
cube.load()
cubes.append(self.post_load_process_piece(cube.data))
self.data = pandas.concat(cubes, axis=0)
if verbose:
print(f"[CubeLogs.load] after postprocessing shape={self.data.shape}")
else:
raise NotImplementedError(
f"Not implemented with the provided data (type={type(self._data)})"
)
assert all(isinstance(c, str) for c in self.data.columns), (
f"The class only supports string as column names "
f"but found {[c for c in self.data.columns if not isinstance(c, str)]}"
)
if verbose:
print(f"[CubeLogs.load] loaded with shape={self.data.shape}")
self._initialize_columns()
if verbose:
print(f"[CubeLogs.load] time={self.time}")
print(f"[CubeLogs.load] keys={self.keys_no_time}")
print(f"[CubeLogs.load] values={self.values}")
print(f"[CubeLogs.load] ignored={self.ignored}")
print(f"[CubeLogs.load] ignored_values={self.ignored_values}")
print(f"[CubeLogs.load] ignored_keys={self.ignored_keys}")
assert self.keys_no_time, f"No keys found with {self._keys} from {self.data.columns}"
assert self.values, f"No values found with {self._values} from {self.data.columns}"
assert not (
set(self.keys_no_time) & set(self.values)
), f"Columns {set(self.keys_no_time) & set(self.values)} cannot be keys and values"
assert not (
set(self.keys_no_time) & set(self.ignored)
), f"Columns {set(self.keys_no_time) & set(self.ignored)} cannot be keys and ignored"
assert not (
set(self.values) & set(self.ignored)
), f"Columns {set(self.keys_no_time) & set(self.ignored)} cannot be values and ignored"
assert (
self.time not in self.keys_no_time
and self.time not in self.values
and self.time not in self.ignored
), (
f"Column {self.time!r} is also a key, a value or ignored, "
f"keys={sorted(self.keys_no_time)}, values={sorted(self.values)}, "
f"ignored={sorted(self.ignored)}"
)
self._columns = [self.time, *self.keys_no_time, *self.values, *self.ignored]
self.dropped = [c for c in self.data.columns if c not in set(self.columns)]
self.data = self.data[self.columns]
if verbose:
print(f"[CubeLogs.load] dropped={self.dropped}")
print(f"[CubeLogs.load] data.shape={self.data.shape}")
shape = self.data.shape
if verbose:
print(f"[CubeLogs.load] removed columns, shape={self.data.shape}")
self._preprocess()
if verbose:
print(f"[CubeLogs.load] preprocess, shape={self.data.shape}")
assert (
self.data.shape[0] > 0
), f"The preprocessing reduced shape {shape} to {self.data.shape}."
if self.recent and verbose:
print(f"[CubeLogs.load] keep most recent data.shape={self.data.shape}")
# Let's apply the formulas
if self._formulas:
forms = (
{k: k for k in self._formulas}
if not isinstance(self._formulas, dict)
else self._formulas
)
cols = set(self.values)
for k, ff in forms.items():
f = self._process_formula(ff)
if k in cols or f is None:
if verbose:
print(f"[CubeLogs.load] skip formula {k!r}")
else:
if verbose:
print(f"[CubeLogs.load] apply formula {k!r}")
self.data[k] = f(self.data)
self.values.append(k)
cols.add(k)
self.values_for_key = {k: set(self.data[k].dropna()) for k in self.keys_time}
for k in self.keys_no_time:
if self.data[k].isna().max():
self.values_for_key[k].add(np.nan)
self.keys_with_nans = [
c for c in self.keys_time if self.data[c].isna().astype(int).sum() > 0
]
if verbose:
print(f"[CubeLogs.load] convert column {self.time!r} into date")
if self.keys_with_nans:
print(f"[CubeLogs.load] keys_with_nans={self.keys_with_nans}")
self.data[self.time] = pandas.to_datetime(self.data[self.time])
if self.keep_last_date:
times = self.data[self.time].dropna()
mi, mx = times.min(), times.max()
if mi != mx:
print(f"[CubeLogs.load] setting all dates in column {self.time} to {mx!r}")
self.data.loc[~self.data[self.time].isna(), self.time] = mx
self.values_for_key[self.time] = {mx}
if self.data[self.time].isna().max():
self.values_for_key[self.time].add(np.nan)
if verbose:
print(f"[CubeLogs.load] done, shape={self.shape}")
return self
def _process_formula(
self, formula: Union[str, Callable[[pandas.DataFrame], pandas.Series]]
) -> Callable[[pandas.DataFrame], pandas.Series]:
assert callable(formula), f"formula={formula!r} is not supported."
return formula
@property
def shape(self) -> Tuple[int, int]:
"Returns the shape."
assert hasattr(self, "data"), "Method load was not called"
return self.data.shape
@property
def columns(self) -> Sequence[str]:
"Returns the columns."
assert hasattr(self, "data"), "Method load was not called"
return self.data.columns
def _preprocess(self):
last = self.values[0]
gr = self.data[[*self.keys_time, last]].groupby(self.keys_time, dropna=False).count()
gr = gr[gr[last] > 1]
if self.recent:
cp = self.data.copy()
assert (
"__index__" not in cp.columns
), f"'__index__' should not be a column in {cp.columns}"
cp["__index__"] = np.arange(cp.shape[0])
gr = (
cp[[*self.keys_time, "__index__"]]
.groupby(self.keys_no_time, as_index=False, dropna=False)
.max()
)
assert gr.shape[0] > 0, (
f"Something went wrong after the groupby.\n"
f"{cp[[*self.keys, self.time, '__index__']].head().T}"
)
filtered = pandas.merge(cp, gr, on=["__index__", *self.keys_time])
assert filtered.shape[0] <= self.data.shape[0], (
f"Keeping the latest row brings more row {filtered.shape} "
f"(initial is {self.data.shape})."
)
self.data = filtered.drop("__index__", axis=1)
else:
assert gr.shape[0] == 0, f"There are duplicated rows:\n{gr}"
@classmethod
def _filter_column(cls, filters, columns, can_be_empty=False):
assert list(columns), "columns is empty"
set_cols = set()
for f in filters:
if set(f) & {'"', "^", ".", "*", "+", "{", "}"}:
reg = re.compile(f)
cols = [c for c in columns if reg.search(c)]
elif f in columns:
# No regular expression.
cols = [f]
else:
continue
set_cols |= set(cols)
assert (
can_be_empty or set_cols
), f"Filters {filters} returns an empty set from {columns}"
return sorted(set_cols)
def _initialize_columns(self):
keys = self._filter_column(self._keys, self.data.columns)
self.values = self._filter_column(self._values, self.data.columns)
self.ignored = self._filter_column(self._ignored, self.data.columns, True)
assert (
self._time in self.data.columns
), f"Column {self._time} not found in {pprint.pformat(sorted(self.data.columns))}"
ignored_keys = set(self.ignored) & set(keys)
ignored_values = set(self.ignored) & set(self.values)
self.keys_no_time = [c for c in keys if c not in ignored_keys]
self.values = [c for c in self.values if c not in ignored_values]
self.ignored_keys = sorted(ignored_keys)
self.ignored_values = sorted(ignored_values)
self.time = self._time
self.keys_time = [self.time, *[c for c in keys if c not in ignored_keys]]
def __str__(self) -> str:
"usual"
return str(self.data) if hasattr(self, "data") else str(self._data)
[docs]
def view(
self,
view_def: Union[str, CubeViewDef],
return_view_def: bool = False,
verbose: int = 0,
) -> Union[pandas.DataFrame, Tuple[pandas.DataFrame, CubeViewDef]]:
"""
Returns a dataframe, a pivot view.
`key_index` determines the index, the other key columns determines
the columns. If `ignore_unique` is True, every columns with a unique value
is removed.
:param view_def: view definition
:param return_view_def: returns the view as well
:param verbose: verbosity level
:return: dataframe
"""
assert isinstance(
view_def, CubeViewDef
), f"view_def should be a CubeViewDef, got {type(view_def)}: {view_def!r} instead"
if verbose:
print(f"[CubeLogs.view] -- start view {view_def.name!r}: {view_def}")
key_agg = (
self._filter_column(view_def.key_agg, self.keys_time) if view_def.key_agg else []
)
set_key_agg = set(key_agg)
assert set_key_agg <= set(self.keys_time), (
f"view_def.name={view_def.name!r}, "
f"non existing keys in key_agg {set_key_agg - set(self.keys_time)}",
f"keys={sorted(self.keys_time)}",
)
values = self._filter_column(view_def.values, self.values)
assert set(values) <= set(self.values), (
f"view_def.name={view_def.name!r}, "
f"non existing columns in values {set(values) - set(self.values)}, "
f"values={sorted(self.values)}"
)
# aggregation
if key_agg:
final_stack = True
key_index = [
c
for c in self._filter_column(view_def.key_index, self.keys_time)
if c not in set_key_agg
]
keys_no_agg = [c for c in self.keys_time if c not in set_key_agg]
if verbose:
print(f"[CubeLogs.view] aggregation of {set_key_agg}")
print(f"[CubeLogs.view] groupby {keys_no_agg}")
data_red = self.data[[*keys_no_agg, *values]]
assert set(key_index) <= set(data_red.columns), (
f"view_def.name={view_def.name!r}, "
f"nnable to find {set(key_index) - set(data_red.columns)}, "
f"key_agg={key_agg}, keys_no_agg={keys_no_agg},\n--\n"
f"selected={pprint.pformat(sorted(data_red.columns))},\n--\n"
f"keys={pprint.pformat(sorted(self.keys_time))}"
)
grouped_data = data_red.groupby(keys_no_agg, as_index=True, dropna=False)
if callable(view_def.agg_args):
agg_kwargs = view_def.agg_kwargs or {}
agg_args = ({c: view_def.agg_args(c) for c in values},)
else:
agg_args = view_def.agg_args # type: ignore[assignment]
agg_kwargs = view_def.agg_kwargs or {}
data = grouped_data.agg(*agg_args, **agg_kwargs)
if view_def.agg_multi:
append = []
for k, f in view_def.agg_multi.items():
cv = grouped_data.apply(f, include_groups=False)
append.append(cv.to_frame(k))
data = pandas.concat([data, *append], axis=1)
set_all_keys = set(keys_no_agg)
values = list(data.columns)
data = data.reset_index(drop=False)
else:
key_index = self._filter_column(view_def.key_index, self.keys_time)
if verbose:
print(f"[CubeLogs.view] no aggregation, index={key_index}")
data = self.data[[*self.keys_time, *values]]
set_all_keys = set(self.keys_time)
final_stack = False
assert set(key_index) <= set_all_keys, (
f"view_def.name={view_def.name!r}, "
f"Non existing keys in key_index {set(key_index) - set_all_keys}"
)
# remove unnecessary column
set_key_columns = {
c for c in self.keys_time if c not in key_index and c not in set(key_agg)
}
key_index0 = key_index
if view_def.ignore_unique:
unique = {
k for k, v in self.values_for_key.items() if k in set_all_keys and len(v) <= 1
}
keep_anyway = (
set(view_def.keep_columns_in_index)
if view_def.keep_columns_in_index
else set()
)
key_index = [k for k in key_index if k not in unique or k in keep_anyway]
key_columns = [k for k in set_key_columns if k not in unique or k in keep_anyway]
if verbose:
print(f"[CubeLogs.view] unique={unique}, keep_anyway={keep_anyway}")
print(
f"[CubeLogs.view] columns with unique values "
f"{set(key_index0) - set(key_index)}"
)
else:
if verbose:
print("[CubeLogs.view] keep all columns")
key_columns = sorted(set_key_columns)
unique = set()
_md = lambda s: {k: v for k, v in self.values_for_key.items() if k in s} # noqa: E731
all_cols = set(key_columns) | set(key_index) | set(key_agg) | unique
assert all_cols == set(self.keys_time), (
f"view_def.name={view_def.name!r}, "
f"key_columns + key_index + key_agg + unique != keys, left="
f"{set(self.keys_time) - all_cols}, "
f"unique={unique}, index={set(key_index)}, columns={set(key_columns)}, "
f"agg={set(key_agg)}, keys={set(self.keys_time)}, values={values}"
)
# reorder
if view_def.order:
subset = self._filter_column(view_def.order, all_cols | {self.time})
corder = [o for o in view_def.order if o in subset]
assert set(corder) <= set_key_columns, (
f"view_def.name={view_def.name!r}, "
f"non existing columns from order in key_columns "
f"{set(corder) - set_key_columns}"
)
key_columns = [
*[o for o in corder if o in key_columns],
*[c for c in key_columns if c not in view_def.order],
]
else:
corder = None
if view_def.dropna:
data, key_index, key_columns, values = self._dropna( # type: ignore[assignment]
data,
key_index,
key_columns,
values,
keep_columns_in_index=view_def.keep_columns_in_index,
)
if view_def.ignore_columns:
if verbose:
print(f"[CubeLogs.view] ignore_columns {view_def.ignore_columns}")
data = data.drop(view_def.ignore_columns, axis=1)
seti = set(view_def.ignore_columns)
if view_def.keep_columns_in_index:
seti -= set(view_def.keep_columns_in_index)
key_index = [c for c in key_index if c not in seti]
key_columns = [c for c in key_columns if c not in seti]
values = [c for c in values if c not in seti]
# final verification
if verbose:
print(f"[CubeLogs.view] key_index={key_index}")
print(f"[CubeLogs.view] key_columns={key_columns}")
g = data[[*key_index, *key_columns]].copy()
g["count"] = 1
r = g.groupby([*key_index, *key_columns], dropna=False).sum()
not_unique = r[r["count"] > 1]
assert not_unique.shape[0] == 0, (
f"view_def.name={view_def.name!r}, "
f"unable to run the pivot with index={sorted(key_index)}, "
f"key={sorted(key_columns)}, key_agg={key_agg}, values={sorted(values)}, "
f"columns={sorted(data.columns)}, ignored={view_def.ignore_columns}, "
f"not unique={set(data.columns) - unique}"
f"\n--\n{not_unique.head()}"
)
# pivot
if verbose:
print(f"[CubeLogs.view] values={values}")
if key_index:
piv = data.pivot(index=key_index[::-1], columns=key_columns, values=values)
else:
# pivot does return the same rank with it is empty.
# Let's add arficially one
data = data.copy()
data["ALL"] = "ALL"
piv = data.pivot(index=["ALL"], columns=key_columns, values=values)
if isinstance(piv, pandas.Series):
piv = piv.to_frame(name="series")
names = list(piv.columns.names)
assert (
"METRICS" not in names
), f"Not implemented when a level METRICS already exists {names!r}"
names[0] = "METRICS"
piv.columns = piv.columns.set_names(names)
if final_stack:
piv = piv.stack("METRICS", future_stack=True)
if view_def.transpose:
piv = piv.T
if isinstance(piv, pandas.Series):
piv = piv.to_frame("VALUE")
piv.sort_index(inplace=True)
if isinstance(piv.columns, pandas.MultiIndex):
if corder:
# reorder the levels for the columns with the view definition
new_corder = [c for c in corder if c in piv.columns.names]
new_names = [
*[c for c in piv.columns.names if c not in new_corder],
*new_corder,
]
piv.columns = piv.columns.reorder_levels(new_names)
elif self.time in piv.columns.names:
# put time at the end
new_names = list(piv.columns.names)
ind = new_names.index(self.time)
if ind < len(new_names) - 1:
del new_names[ind]
new_names.append(self.time)
piv.columns = piv.columns.reorder_levels(new_names)
if view_def.no_index:
piv = piv.reset_index(drop=False)
else:
piv.sort_index(inplace=True, axis=1)
if verbose:
print(f"[CubeLogs.view] levels {piv.index.names}, {piv.columns.names}")
print(f"[CubeLogs.view] -- done view {view_def.name!r}")
return (piv, view_def) if return_view_def else piv
def _dropna(
self,
data: pandas.DataFrame,
key_index: Sequence[str],
key_columns: Sequence[str],
values: Sequence[str],
keep_columns_in_index: Optional[Sequence[str]] = None,
) -> Tuple[pandas.DataFrame, Sequence[str], Sequence[str], Sequence[str]]:
set_keep_columns_in_index = (
set(keep_columns_in_index) if keep_columns_in_index else set()
)
v = data[values]
new_data = data[~v.isnull().all(1)]
if data.shape == new_data.shape:
return data, key_index, key_columns, values
new_data = new_data.copy()
new_key_index = []
for c in key_index:
if c in set_keep_columns_in_index:
new_key_index.append(c)
continue
v = new_data[c]
sv = set(v.dropna())
if len(sv) > 1 or (v.isna().max() and len(sv) > 0):
new_key_index.append(c)
new_key_columns = []
for c in key_columns:
if c in set_keep_columns_in_index:
new_key_columns.append(c)
continue
v = new_data[c]
sv = set(v.dropna())
if len(sv) > 1 or (v.isna().max() and len(sv) > 0):
new_key_columns.append(c)
for c in set(key_index) | set(key_columns):
s = new_data[c]
if s.isna().max():
if pandas.api.types.is_numeric_dtype(s):
min_v = s.dropna().min()
assert (
min_v >= 0
), f"Unable to replace nan values in column {c!r}, min_v={min_v}"
new_data[c] = s.fillna(-1)
else:
new_data[c] = s.fillna("NAN")
return new_data, new_key_index, new_key_columns, values
[docs]
def describe(self) -> pandas.DataFrame:
"""Basic description of all variables."""
rows = []
for name in self.data.columns:
values = self.data[name]
dtype = values.dtype
nonan = values.dropna()
obs = dict(
name=name,
dtype=str(dtype),
missing=len(values) - len(nonan),
kind=(
"time"
if name == self.time
else (
"keys"
if name in self.keys_no_time
else (
"values"
if name in self.values
else ("ignored" if name in self.ignored else "unused")
)
)
),
)
if len(nonan) > 0:
obs.update(dict(count=len(nonan)))
if is_numeric_dtype(nonan):
obs.update(
dict(
min=nonan.min(),
max=nonan.max(),
mean=nonan.mean(),
sum=nonan.sum(),
n_values=len(set(nonan)),
)
)
elif obs["kind"] == "time":
unique = set(nonan)
obs["n_values"] = len(unique)
o = dict(
min=str(nonan.min()),
max=str(nonan.max()),
n_values=len(set(nonan)),
)
o["values"] = f"{o['min']} - {o['max']}"
obs.update(o)
else:
unique = set(nonan)
obs["n_values"] = len(unique)
if len(unique) < 20:
obs["values"] = ",".join(map(str, sorted(unique)))
rows.append(obs)
return pandas.DataFrame(rows).set_index("name")
[docs]
def to_excel(
self,
output: str,
views: Union[Sequence[str], Dict[str, Union[str, CubeViewDef]]],
main: Optional[str] = "main",
raw: Optional[str] = "raw",
verbose: int = 0,
csv: Optional[Sequence[str]] = None,
):
"""
Creates an excel file with a list of view.
:param output: output file to create
:param views: sequence or dictionary of views to append
:param main: add a page with statitcs on all variables
:param raw: add a page with the raw data
:param csv: views to dump as csv files (same name as outputs + view naw)
:param verbose: verbosity
"""
if verbose:
print(f"[CubeLogs.to_excel] create Excel file {output}, shape={self.shape}")
views = {k: k for k in views} if not isinstance(views, dict) else views
f_highlights = {}
plots = []
with pandas.ExcelWriter(output, engine="openpyxl") as writer:
if main:
assert main not in views, f"{main!r} is duplicated in views {sorted(views)}"
df = self.describe().sort_values("name")
if verbose:
print(f"[CubeLogs.to_excel] add sheet {main!r} with shape {df.shape}")
df.to_excel(writer, sheet_name=main, freeze_panes=(1, 1))
for name, view in views.items():
df, tview = self.view(view, return_view_def=True, verbose=max(verbose - 1, 0))
memory = df.memory_usage(deep=True).sum()
if verbose:
print(
f"[CubeLogs.to_excel] add sheet {name!r} with shape "
f"{df.shape} ({memory} bytes), index={df.index.names}, "
f"columns={df.columns.names}"
)
if self.time in df.columns.names:
# Let's convert the time into str
fr = df.columns.to_frame()
if is_datetime64_any_dtype(fr[self.time]):
dt = fr[self.time]
has_time = (dt != dt.dt.normalize()).any()
sdt = dt.apply(
lambda t, has_time=has_time: t.strftime(
"%Y-%m-%dT%H-%M-%S" if has_time else "%Y-%m-%d"
)
)
fr[self.time] = sdt
df.columns = pandas.MultiIndex.from_frame(fr)
if csv and name in csv:
name_csv = f"{output}.{name}.csv"
if verbose:
print(f"[CubeLogs.to_excel] saving sheet {name!r} in {name_csv!r}")
df.reset_index(drop=False).to_csv(f"{output}.{name}.csv", index=False)
if memory > 2**22:
msg = (
f"[CubeLogs.to_excel] skipping {name!r}, "
f"too big for excel with {memory} bytes"
)
if verbose:
print(msg)
else:
warnings.warn(msg, category=RuntimeWarning, stacklevel=0)
else:
df.to_excel(
writer,
sheet_name=name,
freeze_panes=(df.columns.nlevels + df.index.nlevels, df.index.nlevels),
)
f_highlights[name] = tview.f_highlight
if tview.plots:
plots.append(CubePlot(df, kind="barh", orientation="row", split=True))
if raw:
assert main not in views, f"{main!r} is duplicated in views {sorted(views)}"
# Too long.
# self._apply_excel_style(raw, writer, self.data)
if csv and "raw" in csv:
df.reset_index(drop=False).to_csv(f"{output}.raw.csv", index=False)
memory = df.memory_usage(deep=True).sum()
if memory > 2**22:
msg = (
f"[CubeLogs.to_excel] skipping 'raw', "
f"too big for excel with {memory} bytes"
)
if verbose:
print(msg)
else:
warnings.warn(msg, category=RuntimeWarning, stacklevel=0)
else:
if verbose:
print(f"[CubeLogs.to_excel] add sheet 'raw' with shape {self.shape}")
self.data.to_excel(
writer, sheet_name="raw", freeze_panes=(1, 1), index=True
)
if plots:
from openpyxl.drawing.image import Image
if verbose:
print(f"[CubeLogs.to_excel] plots {len(plots)} plots")
sheet = writer.book.create_sheet("plots")
pos = 0
empty_row = 1
times = self.data[self.time].dropna()
mini, maxi = times.min(), times.max()
title_suffix = (str(mini) if mini == maxi else f"{mini}-{maxi}").replace(
" 00:00:00", ""
)
for plot in plots:
imgs = plot.to_images(
verbose=verbose, merge=True, title_suffix=title_suffix
)
for img in imgs:
y = (pos // 2) * 16
loc = f"A{y}" if pos % 2 == 0 else f"M{y}"
sheet.add_image(Image(io.BytesIO(img)), loc)
if verbose:
no = f"{output}.png"
print(f"[CubeLogs.to_excel] dump graphs into {no!r}")
with open(no, "wb") as f:
f.write(img)
pos += 1
empty_row += len(plots) + 2
if verbose:
print(f"[CubeLogs.to_excel] applies style to {output!r}")
apply_excel_style(writer, f_highlights) # type: ignore[arg-type]
if verbose:
print(f"[CubeLogs.to_excel] done with {len(views)} views")