onnx_diagnostic.helpers.onnx_helper¶
- onnx_diagnostic.helpers.onnx_helper.check_model_ort(onx: ModelProto, providers: str | List[Any] | None = None, dump_file: str | None = None) onnxruntime.InferenceSession[source]¶
- Loads a model with onnxruntime. - Parameters:
- onx – ModelProto 
- providers – list of providers, None fur CPU, cpu for CPU, cuda for CUDA 
- dump_file – if not empty, dumps the model into this file if an error happened 
 
- Returns:
- InferenceSession 
 
- onnx_diagnostic.helpers.onnx_helper.convert_endian(tensor: TensorProto) None[source]¶
- Call to convert endianness of raw data in tensor. - Args:
- tensor: TensorProto to be converted. 
 
- onnx_diagnostic.helpers.onnx_helper.dtype_to_tensor_dtype(dt: dtype | torch.dtype) int[source]¶
- Converts a torch dtype or numpy dtype into a onnx element type. - Parameters:
- to – dtype 
- Returns:
- onnx type 
 
- onnx_diagnostic.helpers.onnx_helper.from_array_extended(tensor: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], name: str | None = None) TensorProto[source]¶
- Converts an array into a - onnx.TensorProto.- Parameters:
- tensor – numpy array or torch tensor 
- name – name 
 
- Returns:
- TensorProto 
 
- onnx_diagnostic.helpers.onnx_helper.from_array_ml_dtypes(arr: Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], name: str | None = None) TensorProto[source]¶
- Converts a numpy array to a tensor def assuming the dtype is defined in ml_dtypes. - Args:
- arr: a numpy array. name: (optional) the name of the tensor. 
- Returns:
- TensorProto: the converted tensor def. 
 
- onnx_diagnostic.helpers.onnx_helper.get_onnx_signature(model: ModelProto) Tuple[Tuple[str, Any], ...][source]¶
- Produces a tuple of tuples corresponding to the signatures. - Parameters:
- model – model 
- Returns:
- signature 
 
- onnx_diagnostic.helpers.onnx_helper.np_dtype_to_tensor_dtype(dt: dtype) int[source]¶
- Converts a numpy dtype into a onnx element type. - Parameters:
- to – dtype 
- Returns:
- onnx type 
 
- onnx_diagnostic.helpers.onnx_helper.onnx_dtype_name(itype: int) str[source]¶
- Returns the ONNX name for a specific element type. - <<< - import onnx from onnx_diagnostic.helpers.onnx_helper import onnx_dtype_name itype = onnx.TensorProto.BFLOAT16 print(onnx_dtype_name(itype)) print(onnx_dtype_name(7)) - >>> - BFLOAT16 INT64 
- onnx_diagnostic.helpers.onnx_helper.onnx_dtype_to_np_dtype(itype: int) Any[source]¶
- Converts an onnx type into a to numpy dtype. That includes ml_dtypes dtypes. - Parameters:
- to – onnx dtype 
- Returns:
- numpy dtype 
 
- onnx_diagnostic.helpers.onnx_helper.onnx_dtype_to_torch_dtype(itype: int) torch.dtype[source]¶
- Converts an onnx type into a torch dtype. - Parameters:
- to – onnx dtype 
- Returns:
- torch dtype 
 
- onnx_diagnostic.helpers.onnx_helper.onnx_find(onx: str | ModelProto, verbose: int = 0, watch: Set[str] | None = None) List[NodeProto | TensorProto][source]¶
- Looks for node producing or consuming some results. - Parameters:
- onx – model 
- verbose – verbosity 
- watch – names to search for 
 
- Returns:
- list of nodes 
 
- onnx_diagnostic.helpers.onnx_helper.onnx_lighten(onx: str | ModelProto, verbose: int = 0) Tuple[ModelProto, Dict[str, Dict[str, float]]][source]¶
- Creates a model without big initializers but stores statistics into dictionaries. The function can be reversed with - onnx_diagnostic.helpers.onnx_helper.onnx_unlighten(). The model is modified inplace.- Parameters:
- onx – model 
- verbose – verbosity 
 
- Returns:
- new model, statistics 
 
- onnx_diagnostic.helpers.onnx_helper.onnx_unlighten(onx: str | ModelProto, stats: Dict[str, Dict[str, float]] | None = None, verbose: int = 0) ModelProto[source]¶
- Function fixing the model produced by function - onnx_diagnostic.helpers.onnx_helper.onnx_lighten(). The model is modified inplace.- Parameters:
- onx – model 
- stats – statistics, can be None if onx is a file, then it loads the file - <filename>.stats, it assumes it is json format
- verbose – verbosity 
 
- Returns:
- new model, statistics 
 
- onnx_diagnostic.helpers.onnx_helper.pretty_onnx(onx: FunctionProto | GraphProto | ModelProto | ValueInfoProto | str, with_attributes: bool = False, highlight: Set[str] | None = None, shape_inference: bool = False) str[source]¶
- Displays an onnx prot in a better way. - Parameters:
- with_attributes – displays attributes as well, if only a node is printed 
- highlight – to highlight some names 
- shape_inference – run shape inference before printing the model 
 
- Returns:
- text 
 
- onnx_diagnostic.helpers.onnx_helper.proto_from_tensor(arr: torch.Tensor, name: str | None = None, verbose: int = 0) TensorProto[source]¶
- Converts a torch Tensor into a TensorProto. - Parameters:
- arr – tensor 
- verbose – display the type and shape 
 
- Returns:
- a TensorProto 
 
- onnx_diagnostic.helpers.onnx_helper.tensor_dtype_to_np_dtype(tensor_dtype: int) dtype[source]¶
- Converts a TensorProto’s data_type to corresponding numpy dtype. It can be used while making tensor. - Parameters:
- tensor_dtype – TensorProto’s data_type 
- Returns:
- numpy’s data_type 
 
- onnx_diagnostic.helpers.onnx_helper.to_array_extended(proto: TensorProto) Buffer | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes][source]¶
- Converts - onnx.TensorProtointo a numpy array.
- onnx_diagnostic.helpers.onnx_helper.torch_dtype_to_onnx_dtype(to: torch.dtype) int[source]¶
- Converts a torch dtype into a onnx element type. - Parameters:
- to – torch dtype 
- Returns:
- onnx type